Young's Modulus Profile in Kolsterized AISI 316L Steel

Article Preview

Abstract:

AISI 316L steel, subjected to a low temperature carburizing treatment (kolstering), has been examined by Mechanical Spectroscopy (MS) and nanoindentation to determine the Youngs modulus of the surface hardened layer (S phase). MS results showed that the average value of elastic modulus of S phase is 202 GPa, a little higher than that of the untreated material.Nanoindentation tests, carried out with loads of 5, 15 and 30 mN, evidence a modulus profile vs depth: E is ~ 400 GPa at a distance from the surface of ~ 110 nm, then decreases to reach the value of the steel substrate (190 GPa) at 33 μm.These results, together with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) measurements of carbon concentration profile, can be explained by considering the presence of a very thin surface layer, different from S phase and consisting of a mixed structure of Diamond-like carbon (DLC) and tetrahedral carbon (taC).Furthermore, the same experiments have been carried out also after heat treatments at 450 °C to correlate the modulus change to the decomposition of the metastable S phase leading to the formation of (Cr,Mo)C and Cr23C6 carbides in a Cr-depleted austenitic matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-188

Citation:

Online since:

July 2013

Export:

Price:

[1] D. Peckner, I.M. Bernstein, in: Handbook of Stainless Steels (Mc Graw-Hill, New York, 1997).

Google Scholar

[2] K. L. Hsu, T. M. Ahn, D.A. Rigney: Wear Vol. 60 (1980), p.13.

Google Scholar

[3] Information on http://www.kolsterising.bodycote.com

Google Scholar

[4] X.Y. Li, S. Thaiwatthana, H. Dong, T. Bell, Surf. Eng. Vol. 18 (2002), p.448.

Google Scholar

[5] K. Tokaji, K. Kohyama, M. Akita: Int. J. of Fatigue Vol. 26 (2004), p.543.

Google Scholar

[6] G.M. Michal, F. Ernst, H. Kahn, et al.: Acta Mater. Vol. 54 (2006), p.1597.

Google Scholar

[7] Y. Sun, L.Y. Chin: Surf. Eng. Vol. 18 (2002), p.443.

Google Scholar

[8] L. Ceschini, E. Lanzoni, G. Sambogna, V. Bordiga: J. ASTM Int. Vol. 3 (2006), p.1.

Google Scholar

[9] L. Ceschini, A. Marconi, C. Martini, R. Montanari, N. Ucciardello: Proc. 34th AIM Conf. (Trento, Italy, November 2012).

Google Scholar

[10] S. Amadori, E.G. Campari, A.L. Fiorini, et al.: Mater. Sci. Eng. A Vol. 442 (2006), p.543.

Google Scholar

[11] I. Ciancaglioni, R. Donnini, S. Kaciulis, et al.: Surf. Interface Anal. Vol. 44, (2012) p.1001.

Google Scholar

[12] W.J. Arnoult, R.B. McLellan: Acta Metall. Vol. 23 (1975), p.51.

Google Scholar

[13] K. Farrell, E.D. Specht, J. Pang, et al.: J. Nuclear Mater. Vol. 343 (2005), p.123.

Google Scholar

[14] A. Mezzi and S. Kaciulis: Surf. Interface Anal. Vol. 42 (2010), p.1082.

Google Scholar

[15] S. Kaciulis: Surf. Interface Anal. Vol. 44 (2012), p.1155.

Google Scholar

[16] A. Grill: Diamond and Related Mater. Vol. 8 (1999), p.428.

Google Scholar

[17] A. Grill: Surf. Coat. Technol. Vol. 94-95 (1997), p.507.

Google Scholar

[18] N. Savvides, T.J. Bell: Thin Solid Films Vol. 28 (1993), p.289.

Google Scholar

[19] S. Kaciulis, A. Mezzi, R. Donnini, et al.: Surf. Interface Anal. Vol. 42 (2010), p.707.

Google Scholar