Physico-Mechanical Properties of Starch-Based Nanocomposite Film Incorporated with Hydrothermally Synthesized Zinc Oxide Nanoparticles

Article Preview

Abstract:

Zinc oxide nanoparticles (ZnO-NPs) were successfully prepared by hydrothermal method at low temperatures (80°C) for 2 hours using zinc nitrate as starting materials. The average size of hydrothermally synthesized ZnO-NPs were comparable with commercial one as confirmed by Particle Size Analyzer (PSA). The incorporation of hydrothermally synthesized ZnO-NPs (0.5% and 1%, w/w) and glycerol as plasticizer (20%, w/w) into tapioca starch film significantly reduce water absorption capacity and water vapor transmission rate while increasing tensile strength and elongation at break of the composite film. These results suggest that hydrothermally synthesized ZnO-NPs have the potential as nanofiller to improve the physical and mechanical properties of biobased film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-167

Citation:

Online since:

September 2016

Export:

Price:

[1] N.E. Suyatma, Y. Ishikawa and H. Kitazawa: Adv. Mat. Res. Vol. 845 (2014), pp.451-456.

Google Scholar

[2] A. Sorrentino, G. Gorrasi, and V. Vittoria: Trends Food Sci. Tech. Vol. 18 (2007) pp.84-95.

Google Scholar

[3] N. Peelman, P. Ragaert, B. De Meulenaer, D. Adons, R. Peeters, L. Cardon, F. Van Impe and F. Devlieghere: Trends Food Sci. Tech. Vol. 32 (2013) pp.128-141.

DOI: 10.1016/j.tifs.2013.06.003

Google Scholar

[4] C. Pittarate, T. Yoovidhya, W. Srichumpuang, N. Intasanta and S. Wongsasulak: Polym. Vol. 43 (2011), pp.978-986.

DOI: 10.1038/pj.2011.97

Google Scholar

[5] P.J.P. Espitia, N.D.F.F. Soares, R.F. Teófilo, J.S. dos Reis Coimbra, D.M. Vitor, R.A. Batista, S.O. Ferreira, N.J. de Andrade and E.A.A. Medeiros: Carb. Polym. Vol. 94 (2013), pp.199-208.

DOI: 10.1016/j.carbpol.2013.01.003

Google Scholar

[6] K. Elen, M. Murariu, R. Peeters, P. Dubois, J. Mullens, A. Hardy and M.K. Van Bael: Polym. Adv. Tech. Vol. 23 (2012), pp.1422-1428.

DOI: 10.1002/pat.2062

Google Scholar

[7] M. Murariu, A. Doumbia, L. Bonnaud, A.L. Dechief, Y. Paint, M. Ferreira, C. Campagne, E. Devaux and P. Dubois: Biomacromol. Vol. 12 (2011), pp.1762-1771.

DOI: 10.1021/bm2001445

Google Scholar

[8] R. Pantani, G. Gorrasi, G. Vigliotta, M. Murariu and P. Dubois: Eur. Polym. J. Vol. 49 (2013), pp.3471-3482.

DOI: 10.1016/j.eurpolymj.2013.08.005

Google Scholar

[9] A.M. Díez-Pascual, C. Xu and R. Luque: J. Mat. Chem. B Vol. 2 (2014), pp.3065-3078.

Google Scholar

[10] A.M. Díez-Pascual and A.L. Díez-Vicente: Int. J. Mol. Sci. Vol. 15(2014), pp.10950-10973.

Google Scholar

[11] X. Ma, P.R. Chang, J. Yang and J. Yu: Carb. Polym. Vol. 75 (2009), pp.472-478.

Google Scholar

[12] J. Yu, J. Yang, B. Liu and X. Ma: Biores. Tech. Vol. 100 (2009), pp.2832-2841.

Google Scholar

[13] A.M. Nafchi, R. Nassiri, S. Sheibani, F. Ariffin and A.A. Karim: Carb. Polym. Vol. 96 (2013), pp.233-239.

Google Scholar

[14] R. Alebooyeh, A.M. Nafchi and M. Jokar: J. Chem. Health Risks Vol. 2 (2012).

Google Scholar

[15] M.M. Marvizadeh, A.M. Nafchi and M. Jokar: J. Chem. Health Risks Vol 4 (2014).

Google Scholar

[16] P.J.P. Espitia, N.D.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz and E.A.A. Medeiros: Food Bioprocess Tech. Vol. 5 (2012), pp.1447-1464.

Google Scholar

[17] A. Kołodziejczak-Radzimska and T. Jesionowski: Mat. Vol. 7 (2014), pp.2833-2881.

Google Scholar

[18] T. Tsuzuki: Int. J. Nanotech. Vol. 6 (2009), pp.567-578.

Google Scholar

[19] K. Byrappa and T. Adschiri: Prog. Cryst. Growth Character. Mat. Vol. 53 (2007), pp.117-166.

Google Scholar

[20] A.R. Rao and V. Dutta: Nanotech. Vol 19 (2008), p.445712.

Google Scholar

[21] A.M.C. Ng, X.Y. Chen, F. Fang, Y.F. Hsu, A.B. Djurišić, C.C. Ling, H.L. Tam, K.W. Cheah, P.W.K. Fong, H.F. Lui and C. Surya: Appl. Phys. B Vol. 100 (2010), pp.851-858.

DOI: 10.1007/s00340-010-4173-9

Google Scholar

[22] E. Sanatgar-Delshade, A. Habibi-Yangjeh and M. Khodadadi-Moghaddam: Monatshefte für chemie Vol. 142 (2011), pp.119-129.

DOI: 10.1007/s00706-010-0441-y

Google Scholar

[23] E. Pál, V. Hornok, R. Kun, V. Chernyshev, T. Seemann, I. Dékány and M. Busse: J. Nanopart. Res. Vol. 14 (2012), pp.1-14.

DOI: 10.1007/s11051-012-1002-6

Google Scholar

[24] M.B. Wayu, R.T. Spidle, T. Devkota, A.K. Deb, R.K. Delong, K.C. Ghosh, A.K. Wanekaya and C.C. Chusuei: Electrochim. Act. Vol 97 (2013), pp.99-104.

DOI: 10.1016/j.electacta.2013.02.028

Google Scholar

[25] W. L Suchanek: J. Cryst. Growth. Vol. 312 (2009), pp.100-108.

Google Scholar

[26] N. Cao, Y. Fu and J. He: Food Hydrocol. Vol. 21 (2007), pp.575-584.

Google Scholar

[27] E.J. Cho, H. Holback, K.C. Liu, S.A. Abouelmagd, J. Park and Y. Yeo: Mol. Pharm. Vol 10 (2013), pp.2093-2110.

Google Scholar

[28] M. Boholm, and R. Arvidsson: NanoEthics (2016) pp.1-16.

Google Scholar

[29] Y. Jiang, A.J. O'Neill and Y. Ding: J. Nanopart. Res. Vol. 17 (2015), pp.1-9.

Google Scholar

[30] H. Yin, V.A. Coleman, P.S. Casey, B. Angel, H.J. Catchpoole, L. Waddington and M.J. McCall: J. Nanopart. Res. Vol. 17 (2015), pp.1-19.

Google Scholar

[31] M.G. Vieira, M.A. da Silva, L.O. dos Santos and M.M. Beppu: Eur. Polym. J. Vol. 47 (2011), pp.254-263.

Google Scholar

[32] S.K. Kumar and R. Krishnamoorti: Ann. Rev. Chem. Biomol. Eng. Vol. 1 (2010), pp.37-58.

Google Scholar

[33] N.L. García, L. Ribba, A. Dufresne, M.I. Aranguren and S. Goyanes: Macromol. Mat. Eng. Vol. 294 (2009), pp.169-177.

DOI: 10.1002/mame.200800271

Google Scholar