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Heat shock protein 90 (Hsp90), one of the most abundant 
and conserved molecular chaperones, is essential in 

eukaryotic cells.[1,2] Different from other well‑known mo‑
lecular chaperone like Hsp70 and GroEL/ES, Hsp90 is not 
required for de novo folding of most proteins but facilitates 
the final maturation of a selected clientele of proteins.[3] 
Hsp90 clients include protein kinases, transcription factors 
such as p53, and steroid hormone receptors  (SHRs).[4‑7] 
Therefore, Hsp90 does not only function in protein folding 
but also contribute to various cellular processes including 
signal transduction, intracellular transport, and protein 
degradation.

Interestingly, while bacteria possess an Hsp90 pro‑
tein, called HtpG in Escherichia coli, no Hsp90 gene has 
been found in archea.[8‑10] However, bacterial Hsp90 is not 
essential and its precise function remains to be investi‑
gated. Recent studies suggest that it collaborates with the 
DnaK  (Hsp70) system in substrate remodeling and may 
function against oxidative stress.[11,12] In yeast, there are two 

Hsp90 isoforms in the cytosol, Hsc82 and Hsp82, of which 
Hsp82 is up‑regulated up to 20 times under heat stress.[2] 
Hsp90α and Hsp90β are the two major isoforms in the cyto‑
plasm of mammalian cells. Hsp90α is inducible under stress 
conditions, while Hsp90β is constitutively expressed.[13] 
Hsp90 analogues also exist in other cellular compartments 
such as Grp94 in the endoplasmic reticulum, Trap‑1 in the 
mitochondrial matrix, and ch‑Hsp90 in the chloroplast.[14‑16] 
Interestingly, Hsp90 can be secreted as well and it promotes 
tumor invasiveness. Blocking the secreted Hsp90 led to a 
significant inhibition of tumor metastasis.[17]

Structure of Hsp90

Structurally, Hsp90 is a homodimer and each pro‑
tomer contains three flexibly linked regions, an N‑terminal 
ATP‑binding domain (N‑domain), a middle domain (M‑do‑
main), and a C‑terminal dimerization domain  (C‑do‑
main) [Figure 1].[18] Except for the charged linker located 
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between the N‑ and M‑domains in eukaryotic Hsp90, this 
domain organization is conserved from bacteria to man. 
Hsp90 is a member of a special class of structurally related, 
evolutionarily conserved split ATPases, the so‑called Gyrase, 
Hsp90, Histindine Kinase, MutL (GHKL) domain ATPases, 
which contain a Bergerat ATP‑binding fold.[19] Another 
interesting feature of the ATP binding region is that several 
conserved amino acid residues form a “lid” that closes over 
the nucleotide binding pocket in the ATP‑bound state but 
is open during the ADP‑bound state.[18] The M‑domain of 
Hsp90 is involved in ATP hydrolysis, as it contains crucial 
catalytic residues for forming the composite ATPase site. 
Moreover, the M‑domain contributes to the interaction sites 
for client proteins and some co‑chaperones.[20] The C‑domain 
is essential for the dimerization of Hsp90. Interestingly, in 
eukaryotic Hsp90, the opening of the C‑domains is anti-
correlated to the closing of the N‑domain.[21] A conserved 
MEEVD motif at the C‑terminal end serves as the docking 
site for the interaction with co‑chaperones which contain a 
tetratricopeptide repeat (TPR) clamp.[22]

Conformational dynamics of Hsp90 

Hsp90 is a weak ATPase and the turnover rates are very 
low, with 1 min−1 for yeast Hsp90 and 0.1 min−1 for human 
Hsp90.[23‑25] Structural studies revealed that Hsp90 spontane‑
ously adopts structurally distinct conformations, which seem 
to be in a dynamic equilibrium [Figure 1].[9,26] Nucleotide bind‑
ing induces directionality and a conformational cycle.[9,27,28] 
In the apo state, Hsp90 adopts a “V”‑shaped form, termed 
“open conformation”  [Figure  1]. ATP binding triggers a 
series of conformational changes including repositioning of 

the N‑terminal lid region and a dramatic change in the N‑M 
domain orientation. Finally, Hsp90 reaches a more compact 
state, termed “closed conformation” in which the N‑domains 
are dimerized [Figure 1].[9,18] Recent biophysical studies us‑
ing ensemble and single molecule fluorescence resonance 
energy transfer (FRET) assays allowed to further dissect the 
ATP‑induced conformational changes [Figure 2].[26,28] After 
fast ATP binding, Hsp90 slowly reaches the first intermediate 
state (I1), in which the ATP lid is closed but the N‑domains 
are still open. The N‑terminal dimerization leads to the 
formation of the second intermediate state (I2), in which 
the M‑domain repositions and interacts with the N‑domain. 
Then Hsp90 reaches a fully closed state in which ATP hy‑
drolysis occurs. After ATP is hydrolyzed, the N‑domains 
dissociate, release ADP as well as inorganic phosphate (Pi), 
and Hsp90 returns to the open conformation again.[28]

Notably, nucleotide binding is not the only determinant 
for Hsp90 conformation. The interaction with co‑chaperones 
and client protein also influences the conformational rear‑
rangement of Hsp90.[29,30] These results suggest that there 
may be a dynamic equilibrium between the different con‑
formations of Hsp90 and this conformational plasticity is 
functionally important since it may allow Hsp90 to adapt 
to different client proteins.

Co‑chaperone regulation of Hsp90

Co‑chaperone regulation is a conserved feature of the 
eukaryotic Hsp90 system. To date, more than 20 co‑chaper‑
ones have been identified.[1,31] They regulate the function of 
Hsp90 in different ways such as inhibition and activation of 
the ATPase of Hsp90 as well as recruitment of specific client 

Figure 1: Open and closed conformation of Hsp90. Crystal structures of full‑length Hsp90 from E. coli (HtpG) in the open conformation (left, 
PDB 2IOQ) and nucleotide‑bound yeast Hsp90 in the closed conformation  (right, PDB 2CG9). The N‑domain is depicted in green, the 
M‑domain in blue, and the C‑domain in orange.
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proteins to the cycle. Interestingly, different co‑chaperones 
work together to facilitate the maturation of Hsp90 clients.[32] 
The composition of co‑chaperone complexes seems to 
depend to some degree on the presence of a specific client 
protein.

The chaperone cycle for SHRs

Early work on Hsp90 mainly focused on the co‑chap‑
erone requirement for the activation of SHRs.[32,33] The 
maturation of most SHRs strictly depends on the interaction 
with Hsp90. Co‑chaperones such as Hop/Sti1 and the large 
peptidylprolyl isomerase  (PPIase) have strong influences 
on the activation.[32,34] Research on the assembly of Hsp90 
with SHRs had shown that several distinct complexes are 
formed during the maturation processes.[32,35,36] According to 
reconstitution experiments, SHRs must pass through three 
complexes with different co‑chaperone compositions chron‑
ologically to reach their active conformation. Hsp70/Hsp40 
were identified as components in the “early complex.”[32] 
After association with Hsp90 through the adaptor protein 
Hop, the “intermediate complex” is formed.[37,38] In addition 
to the intermediate complex, a third complex that contains 
a PPIase and the co‑chaperone p23 had been found as the 
last step of the cycle.[39‑41] Notably, similar heterocomplexes 
can be found from yeast to man even in the absence of client 

protein.[32] Recent studies  [using FRET, analytical ultra‑
centrifugation (aUC), nuclear magnetic resonance (NMR) 
spectroscopy, and electron microscopy] provided insight 
into how the exchange of co‑chaperones is regulated.[42‑44] 
Based on these results, a new model of the chaperone cycle 
emerges [Figure 3A], in which first one Hop/Sti1 binds to 
the Hsp90 dimer and stabilizes its open conformation. As 
a result, the Hsp90 ATPase activity is inhibited. The other 
TPR‑acceptor site is then preferentially occupied by a PPI‑
ase, leading to an asymmetric Hsp90 intermediate complex. 
After the binding of ATP and p23/Sba1, Hsp90 adopts the 
“closed” conformation which weakens the binding of Hop/
Sti1 and therefore promotes its exit. Another PPIase or TPR 
co‑chaperone can potentially bind to form the final complex 
together with Hsp90 and p23/Sba1. Following ATP hydro‑
lysis, p23/Sba1, PPIase, and the folded client are released 
from Hsp90.[42]

Hop/Sti1 serves as an adaptor protein between Hsp70 
and Hsp90 and facilitates the transfer of client protein.[37,38] 
Therefore, it is indispensable for maintaining the hormone 
binding activity of the glucocorticoid receptor  (GR) and 
progesterone receptor  (PR).[45,46] Notably, Hop/Sti1 is a 
member of the large group of TPR co‑chaperones. They 
contain a specialized conserved TPR‑clamp domain, which 
consists of three TPR motifs and recognizes the C‑terminal 

Figure 2: Conformational cycle of Hsp90. After fast ATP binding, Hsp90 slowly reaches the first intermediate state (I1), in which the ATP lid 
is closed but the N‑domains are still open. Then, the N‑terminal dimerization leads to the formation of the second intermediate state (I2), in 
which the M‑domain repositions and interacts with the N‑domain. Then, Hsp90 reaches a fully closed state in which ATP hydrolysis occurs. 
After ATP is hydrolyzed, the N‑domains dissociate, release ADP and Pi, and Hsp90 returns to the open conformation.
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MEEVD motif in Hsp90.[22] Besides Hop/Sti1, the protein 
phosphatase PP5 (yeast homologue Ppt1), and members of 
the PPIase family, like Fkbp52, Fkbp51, and Cyp40 (yeast 

homologues Cpr6/Cpr7), belong to this group.
The TPR‑containing PPIases contain a PPIase domain, 

which catalyzes the interconversion of the cis–trans isomeriza‑

Figure 3: Hsp90 chaperone cycles. (A) Hsp90 chaperone cycle for SHRs. Hsp70, Hsp40, and a client protein form an “early complex.” The 
client protein is transferred from Hsp70 to Hsp90 through the adaptor protein Hop/Sti1. One Hop/Sti1 bound is sufficient to stabilize the 
open conformation of Hsp90. The other TPR‑acceptor site is preferentially occupied by a PPIase, leading to an asymmetric intermediate 
complex. Hsp90 adopts the ATPase‑active (closed) conformation after binding of ATP. p23/Sba1 stabilizes the closed state of Hsp90, which 
weakens the binding of Hop/Sti1 and promotes its exit from the complex. Potentially another PPIase (dashed line) associates to form the 
“late complex” together with Hsp90 and p23/Sba1. After the hydrolysis of ATP, p23/Sba1 and the folded client are released from Hsp90. (B) 
Hsp90 chaperone cycle for kinases. In the early stage, Hsp70 and Hsp40 interact with newly synthesized kinases. Protein kinases are recruited 
to Hsp90 though the action of Hop/Sti1 and the kinase‑specific co‑chaperone Cdc37. Both are able to stabilize the Hsp90/kinase complex. 
Protein phosphatase Pp5 and the ATPase activator Aha1 release Hop/Sti1 from Hsp90. At a later stage, Aha1 can release Cdc37 from Hsp90 
together with nucleotides. (C) Hsp90 chaperone cycle for NLRs. Rar1 binds to the N‑domain of Hsp90 through its Chord1 domain and prevents 
the formation of the closed conformation. This interaction supports the binding of Rar1‑Chord2 to the N‑domain in the other protomer. With 
the association of Rar1‑Chord2, Sgt1 interacts with Hsp90 as well as with an NLR protein. In the stable ternary complex, the lid segment 
promotes ATP hydrolysis. Once ATP is hydrolyzed, Rar1, Sgt1, and the NLR protein may dissociate from Hsp90. (D) Hsp90–R2TP complex. 
Model of the R2TP complex in yeast. Pih1 interacts with Rvb1/2, with the M‑domain of Hsp90, and the C‑domain of Tah1. Tah1 binds to the 
C‑terminal MEEVD motif of Hsp90 through its TPR domain.
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tion of peptide bonds prior to proline residues[47] and a TPR 
domain for the interaction with Hsp90. Most of these large 
PPIases show independent chaperone activity.[48‑50] However, 
the function of PPIases in SHR complexes is not well under‑
stood. They may be selected by specific client proteins. For 
example, Cyp40 is most abundant in estrogen receptor (ER) 
complexes[51] and Fkbp52 mediates potentiation of GR through 
increasing GR hormone‑binding affinity.[34] Interestingly, the 
potentiation effects do not strictly depend on the PPIase ac‑
tivity of Fkbp52 as PPIase‑deficient mutants are also able to 
potentiate GR transactivation, which suggests a noncatalytic 
role of PPIases in the regulation of SHR signaling.[52]

In contrast to Hop/Sti1 and the TPR‑PPIases, p23 is a 
conformation‑specific co‑chaperone which binds exclusively 
to the closed conformation of Hsp90.[53,54] This small acidic 
protein contains an unstructured C‑terminal tail, which is 
essential for its intrinsic chaperone activity.[55,56] p23 was 
identified as a component in SHR complexes, together with 
Hsp90 and a PPIase.[57] It facilitates the maturation of client 
proteins by stabilizing the closed conformation of Hsp90.[58] 
As a result, the ATP hydrolysis, which is indispensable for 
the release of the client protein,[59‑61] is partially inhibited in 
the presence of p23/Sba1.[41,62]

Chaperone cycle for protein kinases

Similar to SHRs, the maturation of protein kinases also 
requires the Hsp70 chaperone machinery  [Figure 3B].[63] 
In the early stage, Hsp70 and Hsp40 interact with newly 
synthesized kinases. Protein kinases are recruited to Hsp90 
through the action of Hop/Sti1 and the kinase‑specific 
co‑chaperone Cdc37. Both are able to stabilize the Hsp90/
kinase complex.[64] At a later stage, the ATPase activator 
Aha1 can release Cdc37 from Hsp90, together with nucleo‑
tides,[65] which leads to the final activation of protein kinases.

Cdc37 is specific for chaperoning kinases.[66,67] It was 
originally identified in Saccharomyces cerevisiae as a gene 
essential for cell cycle progression.[68,69] Cdc37 interacts 
with kinases through its N‑terminal domain and binds to 
the N‑domain of Hsp90 via its C‑terminal part. Similar to 
Hop/Sti1, the interaction of Cdc37 with Hsp90 leads to the 
stabilization of the open conformation and the inhibition of 
Hsp90 ATPase activity.[70]

In contrast to the co‑chaperones discussed above, Aha1 
is the most powerful ATPase activator of Hsp90.[71] It binds 
the N‑ and M‑domains of Hsp90.[20,30] Binding of Aha1 in‑
duces a partially closed Hsp90 conformation and accelerates 
the progression of the ATPase cycle dramatically.[28,30] The 
presence of Aha1 enables Hsp90 to bypass the I1 state and 
to directly reach I2 in the ATPase cycle.[28] The activation of 
specific clients such as viral Src kinase (v‑Src) and SHRs is 
severely affected in Aha1 knockout cells.[72] Moreover, Aha1 
plays a critical role in the inherited misfolding disease cystic 

fibrosis  (CF) through participating in the quality control 
pathway of the cystic fibrosis transmembrane conductance 
regulator (CFTR). Down‑regulation of Aha1 could rescue 
the phenotype caused by misfolded CFTR.[73] Recent re‑
search highlighted the function of Aha1 in the progression 
of the Hsp90 cycle. It efficiently displaces Hop/Sti1 from 
Hsp90 and promotes the transition from the open to closed 
conformation together with a PPIase in a synergistic man‑
ner.[74]

Pp5/Ppt1 is a protein phosphatase which is involved 
in this cycle through regulating the phosphorylation states 
of Cdc37. It associates with Hsp90 through its N‑terminal 
TPR domain. Binding to Hsp90 results in the abrogation 
of the intrinsic inhibition of Pp5/Ppt1.[75] Pp5/Ppt1 spe‑
cifically dephosphorylates Hsp90 and Cdc37 in Hsp90 
complexes.[76,77] In Ppt1 knockout strains, the activity of 
Hsp90‑specific clients is significantly reduced, which 
implies that the tight regulation of the Hsp90 phosphoryla‑
tion state is necessary for the efficient processing of client 
proteins.[76]

Chaperone cycle for nucleotide‑binding site and 
leucine‑rich repeat domain containing (NLR) proteins

NLRs are conserved immune sensors which recog‑
nize pathogens.[78] Accumulating evidence indicates that 
Hsp90 and its co‑chaperones Sgt1 and Rar1 are involved 
in the maturation of these proteins.[79] Sgt1 interacts with 
the N‑domain of Hsp90 through its CS domain, which is 
structurally similar to p23/Sba1.[80,81] However, Sgt1 has no 
inherent Hsp90 ATPase regulatory activity due to differences 
in interaction.[81] Interestingly, although a TPR domain is 
present in Sgt1 as well, it is not involved in the interaction 
with Hsp90.[82] Functionally, Hsp90 and Sgt1 form a ternary 
complex with the co‑chaperone Rar1, which acts as a core 
modulator in plant immunity.[78]

During the recruitment and activation of NLRs, Rar1 
binds to the N‑domain of Hsp90 through its Chord1 do‑
main and prevents the formation of the closed conforma‑
tion  [Figure  3C]. This interaction supports the binding 
of Rar1‑Chord2 to the N‑domain in the other protomer. 
With the association of Rar1‑Chord2, Sgt1 is promoted to 
interact with Hsp90 as well as with an NLR protein. In the 
stable ternary complex, the lid segment is very flexible, 
thus permitting access by a catalytic arginine residue of 
the M‑domain to the ATP binding site and promoting ATP 
hydrolysis. Once ATP is hydrolyzed, Rar1, Sgt1, and the 
NLR protein may dissociate from Hsp90.[83]

Hsp90 complexes in RNA processing

Recent studies showed that Hsp90 is also involved in the 
assembly of small nucleolar ribonucleoproteins (snoRNPs) 
and RNA polymerase.[84‑86] The chaperone cycle is not com‑
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pletely understood yet. However, the central player in this 
process, the R2TP complex (consisting of Tah1, Pih1, and 
the AAA+ ATPase Rvb1 and Rvb2) has been extensively 
investigated [Figure 3D].[86,87]

The co‑chaperone Tah1 interacts with Hsp90 through 
its TPR domain and its C‑terminal region binds Pih1, an 
unstable non‑TPR co‑chaperone of Hsp90  [Figure  3D]. 
During the maturation of snoRNP, the Hsp90–Tah1 complex 
stabilizes Pih1 in vivo and prevents its aggregation in vitro.[84] 
The Tah1–Pih1 heterodimer is able to inhibit the ATPase 
activity of Hsp90.[88] Tah1 and Pih1 are then transferred to 
the Rvb1/2 complex leading to the formation of the R2TP 
complex [Figure 3D]. Together, Hsp90 and the R2TP complex 
are involved in the biogenesis and assembly of snoRNPs. 
Notably, neither Hsp90 nor R2TP are components of the 
mature snoRNP complex. The R2TP–Hsp90 complex works 
together with a prefoldin‑like complex in RNA polymerase 
II assembly. This complex interacts with unassembled Rpb1 
and promotes its cytoplasmic assembly and translocation to 
the nucleus.[85]

In addition to the activation of client protein, co‑chap‑
erones are also involved in other physiological processes, 
such as mitochondrial/chloroplast protein import (Tom70/
Toc64),[89,90] nuclear migration  (NudC),[91] and melanoma 
progression  (TTC4).[92] The above examples provide a 
glimpse on Hsp90 co‑chaperone cycles. For some cycles, 
we have obtained a full picture with detailed information; 
for others, we just start to understand their contributions to 
client protein activation.

Regulation of Hsp90 by posttranslational 
modifications

Posttranslational modifications are another important 
regulatory element of the Hsp90 machinery. Different 
posttranslational modifications such as phosphorylation, 
acetylation, nitrosylation, and methylation tightly control 
the function of Hsp90 and thus influence the maturation of 
client proteins.[93]

Phosphorylation

Phosphorylation is the most frequently detected post‑
translational modification of Hsp90. A number of different 
tyrosine or serine phosphorylation sites have been identified 
and investigated for their impact on Hsp90’s chaperone func‑
tion.[94] For example, only phosphorylated Hsp90 stimulates 
the activity of the Hsp90 client protein heme‑regulated 
inhibitor kinase  (HRI); dephosphorylation eliminated the 
ability of Hsp90 to activate this client protein.[95] Interest‑
ingly, hyperphosphorylation also leads to a decreased Hsp90 
activity. In yeast, the protein phosphatase Ppt1 deletion 
compromised the activation of specific clients.[76] There‑
fore, the phosphorylation states of Hsp90 must be precisely 

regulated in order to maintain the proper function of Hsp90. 
In addition, phosphorylation also modulates the interaction 
with co‑chaperones and thus exerts further influence on the 
Hsp90 machinery.[96] For example, tyrosine phosphorylation 
on Hsp90 disrupts the interaction with Cdc37 and promotes 
the recruitment of Aha1.[97] C‑terminal phosphorylation of 
Hsp90 regulates alternate binding to co‑chaperones Chip and 
Hop, which determine cellular protein folding/degradation 
balances.[98] Furthermore, phosphorylation affects the confor‑
mational cycle of Hsp90, such as formation of the active sites, 
general flexibility, and inter‑domain communication.[96,99]

A number of different kinases can phosphorylate 
Hsp90, such as double‑stranded DNA protein kinase, c‑Src 
kinase, protein kinase A (PKA), CK2 protein kinase, and 
Swe1Wee1 kinase.[100‑103] Interestingly, many of them are at 
the same time Hsp90 client proteins. This indicates that the 
change of phosphorylation states of Hsp90 may influence 
the folding and activation of certain groups of client proteins.

Acetylation

Acetylation is a reversible modification mediated by 
opposing actions of acetyltransferases and deacetylases.[104] 
Hsp90 acetylation and its influence on the chaperone ma‑
chinery have been extensively investigated in recent years. 
In the case of Hsp90, p300 was reported to be the acetyl‑
transferase and HDAC6 acts as a deacetylase which removes 
the acetyl group from the protein.[105,106] Deacetylation of 
Hsp90 drives the formation of Hsp90 client complexes and 
promotes the maturation of the client protein GR. Hsp90 can 
be acetylated at different sites.[107] A study from Necker’s lab 
pointed out that K294, an acetylation site in the M‑domain, 
strongly influences the binding between Hsp90 and its cli‑
ent protein. In general, acetylation weakens Hsp90–client 
interaction, and thus, Hsp90 fails to support the activation 
of the client protein.[108]

Nitrosylation

S‑nitrosylation is a reversible covalent modification of 
reactive cysteine thiols in proteins by nitric oxide (NO).[109,110] 
Mammalian Hsp90 is a target of S‑nitrosylation mediated 
by NO produced by its client protein, endothelial nitric 
oxide synthase (eNOS).[111] S‑nitrosylation was reported as 
a negative regulator which inhibits the ATPase activity of 
Hsp90.[111] In addition, the activation of its client protein, 
eNOS, was also reduced consistent with the notion tha‑
tHsp90 acts as an NO sensor.[111] This provides a feedback 
mechanism to inhibit further eNOS activation. Nitrosylation 
or mutation of the modified C‑terminal cysteine residue in 
Hsp90 led to an ATPase‑incompetent state in which the 
N‑terminal domains are kept in the open conformation.[112] 
The result indicates that nitrosylation has a profound impact 
on the inter‑domain communication in the Hsp90 dimer.
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Hsp90 client protein recognition

To date, more than 200 Hsp90 client proteins have been 
identified (see http://www.picard.ch/downloads/Hsp90inter‑
actors.pdf). Besides the well‑studied clients such as protein 
kinases and SHRs, many others related to, for example, viral 
infection, innate immunity, and RNA modification, have 
been discovered in recent years.[84,113,114] The interaction with 
the Hsp90 machinery enables their correct folding, activa‑
tion, transport, and even degradation.[89,115‑117]

Our understanding of the Hsp90 machinery has been 
greatly advanced by research of the last decades. However, 
some fundamental questions related to client proteins 
still remained unanswered, such as the location of the 
client‑binding sites on Hsp90. Current evidence suggests 
that binding sites could be localized in each of the domains 
of Hsp90.[8] Another intriguing question unsolved so far is 
how Hsp90 recognizes its clients. Hsp90 clients belong to 
different families and do not share common sequences or 
structural motifs. Although some regions were identified 
which are important for the recognition of certain group 
of clients, for example, the αC–β4 loop in kinases,[118,119] 
this is not the only determinant for the interaction as other 
regions adjacent to the kinase domain also influence the 
binding to Hsp90.[120,121] It is reasonable to assume that 
Hsp90 recognizes certain conformations or the stability 
of the client protein rather than its primary sequence. Src 
kinase is a prominent example here. The v‑Src and its 
cellular counterpart (c‑Src) share 95% sequence identity 
but distinct Hsp90 dependency.[122] The activation of v‑Src 
strictly depends on Hsp90, while c‑Src is largely indepen‑
dent of Hsp90.[122] Notably, v‑Src is an aggregation‑prone 
protein and much more sensitive to thermal and heat de‑
naturation than c‑Src.[123] In the case of p53, biochemical 
experiments suggest that p53 interacts with Hsp90 in a 
rather folded state.[124‑126] However, recent results imply 
that p53 may be destabilized by Hsp90,[127] and NMR‑based 
approaches suggested that for heat‑treated p53, Hsp90 
binds the largely unfolded protein.[128] Park et al., proposed 
that Hsp90‑bound p53 is in a molten globule state.[129] In 
contrast, Hagn et al. reported a native‑like structure of p53 
interaction with Hsp90.[130] Further analysis seems to be 
required to resolve this conundrum and to determine the 
molecular mechanism for client recognition.

Hsp90 and protein degradation

Although in general, Hsp90 stabilizes and promotes 
the correct folding of its client proteins, it was also found 
to facilitate protein degradation. In addition to soluble cy‑
tosolic proteins, several reports have shown that Hsp90 is 
also required for the degradation of ER membrane proteins 
such as cytochrome p450 2E1, mutant CFTRΔF508, and 

apolipoprotein B.[131‑133] Another aspect which supports the 
idea that Hsp90 may be involved in the ubiquitin–protea‑
some pathway is the discovery of a protein called carboxyl 
terminus of Hsp70‑interacting protein (CHIP).[134] As an E3 
ubiquitin ligase, CHIP can ubiquitinate unfolded proteins. 
It also interacts with the C‑terminus of Hsp70 and Hsp90 
through its TPR domain.[135,136] The CHIP knockdown is 
known to stabilize some Hsp90 clients, while its overexpres‑
sion promotes their degradation.[137‑139] Recently, more E3 
ligases have been found to be associated with Hsp90, such 
as Ubr1 and Cul5 which are involved in the quality control 
or degradation of different client proteins.[140,141] However, 
aspects such as the selection of different ligases remain to 
be further elucidated.

Hsp90 inhibitors and human diseases

As many proteins which control cell survival, prolif‑
eration, and apoptosis are client proteins of Hsp90, Hsp90 
function is closely related to human health. A number of 
reports have suggested that Hsp90 plays a crucial role in 
the progression of diseases.[142‑145] For example, the expres‑
sion of Hsp90 is 2‑ to 10‑fold higher in tumor cells than 
in normal cells.[146] Therefore, Hsp90 has emerged as an 
important target in several diseases. Numerous natural and 
synthetic Hsp90 inhibitors have been developed in recent 
years, some of which exhibit excellent antitumor activities 
and have entered clinical trials.[141,144,147,148]

Geldanamycin (GA), a benzoquinone ansamycin anti‑
biotic, is the first discovered Hsp90 inhibitor. It binds com‑
petitively to the ATP binding site in the N‑domain of Hsp90 
and thus prevents the conformational change of Hsp90.[149,150] 
GA exhibits potent antitumor effects; however, due to the 
poor solubility and high toxicity, it cannot be used as a drug 
candidate.[151] Different derivatives have been synthesized, 
such as 17‑AAG, which is more hydrophilic and already 
showed success in preclinical and clinical studies.[152,153]

Radicicol (also known as monorden) is another natural 
product inhibitor of Hsp90, which is a 14‑membered mac‑
rolide originally isolated from Monosporium bonorden.[154] 
Radicicol also acts as a nucleotide‑mimicking compound 
and occupies the ATP binding pocket of Hsp90, but with 
a much higher affinity than ATP.[154] in vitro studies have 
shown that radicicol has potent anti‑proliferation effects.[155] 
However, in vivo studies did not reveal anti‑tumor activities, 
which is probably due to its low biological stability.[156]

Besides these two, many new inhibitors have been 
found or synthesized. For example, radanamycin am‑
ide (radamide) was designed based on the co‑crystallization 
structures of the GA/Hsp90 N‑domain and the Radiciol/
Hsp90 N‑domain.[149,157] This chimeric compound contains 
both radicicol’s resorcinol ring and the quinine ring from 
GA. It shows potent inhibition effects of Hsp90 in a low 
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micromolar range in breast cancer cells.[157] PU3, a represen‑
tative of purine‑based inhibitor, binds to Hsp90 and inhibits 
the growth of breast cancer cells.[158] Novobiocin, a couma‑
rin antibiotic, was also identified as an Hsp90 inhibitor.[159] 
Interestingly, novobiocin targets the C‑terminal domain of 
Hsp90.[160] More compounds with better inhibitory activity 
and less toxicity are currently designed and synthesized.[161]

Currently, there are more than 10 different Hsp90 inhib‑
itors in various stages of clinical development, like IPI504, 
NVP‑AUY922, and STA‑9090.[162] The results obtained so 
far look promising, but still several key questions need to 
be addressed. Like in basic research on Hsp90, significant 
progress has been made in recent years, but important ques‑
tions remain to be solved. Prospects are very good that major 
breakthroughs will be achieved in the near future.
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