Nanoparticle Technology as a Double-Edged Sword: Cytotoxic, Genotoxic and Epigenetic Effects on Living Cells

Abstract

Nanoparticles are considered as powerful tools in nanotechnological applications. Due to their unique physicochemical properties, their interactions with different biological systems have been shown. Nanomaterials have been successfully used as coating materials or treatment and diagnosis tools. Nevertheless, toxic effects of nanoparticles in vitro and in vivo have also been reported. Here, we summarize the current state of knowledge on exposure routes, cellular uptake and toxicological activities of the commonly used nanoparticles. In this context, we discuss the mechanisms of toxicity of nanoparticles involving perturbation of redox milieu homeostasis and cellular signaling pathways.

Share and Cite:

M. Jennifer and W. Maciej, "Nanoparticle Technology as a Double-Edged Sword: Cytotoxic, Genotoxic and Epigenetic Effects on Living Cells," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 1, 2013, pp. 53-63. doi: 10.4236/jbnb.2013.41008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Pathak and V. K. Katiyar, “Multi-Functional Nanoparticles and Their Role in Cancer Drug Delivery: A Review,” The A to Z of Nanotechnology, Vol. 3, 2007, pp. 1-17.
[2] Z. G. Chen, “Small-Molecule Delivery by Nanoparticles for Anticancer Therapy,” Trends in Molecular Medicine, Vol. 16, No. 12, 2010, pp. 594-602. doi:10.1016/j.molmed.2010.08.001
[3] S. K. Murthy, “Nanoparticles in Modern Medicine: State of the Art and Future Challenges,” International Journal of Nanomedicine, Vol. 2, No. 2, 2007, pp. 129-141.
[4] K. K. Jain, “Application of Nanobiotechnology in Cancer Therapeutics, in Pharmaceutical Perspectives of Cancer Therapeutics,” Springer, New York, 2009, pp. 245-268. doi:10.1007/978-1-4419-0131-6_8
[5] K. Solarska, A. Gajewska, W. Kaczorowski, G. Bartosza and K. Mitura, “Effect of Nanodiamond Powders on the Viability and Production of Reactive Oxygen and Nitrogen Species by Human Endothelial Cells,” Diamond and Related Materials, Vol. 21, 2012, pp. 107-113.
[6] M. A. Abdelhalim and B. M. Jarrar, “Histological Alterations in the Liver of Rats Induced by Different Gold Nanoparticle Sizes, Doses and Exposure Duration,” Journal of Nanobiotechnology, Vol. 10, 2012, p. 5.
[7] A. Gramowski, J. Flossdorf, K. Bhattacharya, L. Jonas, M. Lantow, Q. Rahman, D. Schiffmann, D. G. Weiss and E. Dopp, “Nanoparticles Induce Changes of the Electrical Activity of Neuronal Networks on Microelectrode Array Neurochips,” Environmental Health Perspectives, Vol. 118, No. 10, 2010, pp. 1363-1369. doi:10.1289/ehp.0901661
[8] G. Yan, Y. Huang, Q. Bu, L. Lv, P. Deng, J. Zhou, Y. Wang, Y. Yang, Q. Liu, X. Cen and Y. Zhao, “Zinc Oxide Nanoparticles Cause Nephrotoxicity and Kidney Metabolism Alterations in Rats,” Journal of Environmental Science and Health, Part A: Toxic/ Hazardous Substances & Environmental Engineering, Vol. 47, No. 4, 2012, pp. 577-588.
[9] R. Yoshida, D. Kitamura and S. Maenosono, “Mutagenicity of Water-Soluble ZnO Nanoparticles in Ames Test,” Journal of Toxicological Sciences, Vol. 34, No. 1, 2009, pp. 119-122. doi:10.2131/jts.34.119
[10] B. Trouiller, R. Reliene, A. Westbrook, P. Solaimani and R. H. Schiestl, “Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability in Vivo in Mice,” Cancer Research, Vol. 69, No. 22, 2009, pp. 8784-8789.
[11] L. Gonzalez, L. C. Thomassen, G. Plas, V. Rabolli, D. Napierska, I. Decordier, M. Roelants, P. H. Hoet, C. E. Kirschhock, J. A. Martens, D. Lison and M. Kirsch-Volders, “Exploring the Aneugenic and Clastogenic Potential in the Nanosize Range: A549 Human Lung Carcinoma Cells and Amorphous Monodisperse Silica Nanoparticles as Models,” Nanotoxicology, Vol. 4, 2010, pp. 382-395. doi:10.1158/0008-5472.CAN-09-2496
[12] J. J. Li, D. Hartono, C. N. Ong, B. H. Bay and L. Y. Yung, “Autophagy and Oxidative Stress Associated with Gold Nanoparticles,” Biomaterials, Vol. 31, No. 23, 2010, pp. 5996-6003. doi:10.1016/j.biomaterials.2010.04.014
[13] W. Gao, K. Xu, L. Ji and B. Tang, “Effect of Gold Nanoparticles on Glutathione Depletion-Induced Hydrogen Peroxide Generation and Apoptosis in HL7702 Cells,” Toxicology Letters, Vol. 205, No. 1, 2011, pp. 86-95. doi:10.1016/j.toxlet.2011.05.1018
[14] E. Hodgson, “Modern Toxicology,” 3rd Edition, John Wiley & Sons, Inc., New York, 2004.
[15] S. Arora, J. M. Rajwade and K. M. Paknikar, “Nanotoxicology and in Vitro Studies: The Need of the Hour,” Toxicology and Applied Pharmacology, Vol. 258, No. 2, 2012, pp. 151-165. doi:10.1016/j.taap.2011.11.010
[16] G. Oberdorster, E. Oberdorster and J. Oberdorster, “Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles,” Environmental Health Perspectives, Vol. 113, No. 7, 2005, pp. 823-839. doi:10.1289/ehp.7339
[17] B. Baroli, “Penetration of Nanoparticles and Nanomaterials in the Skin: Fiction or Reality?” Journal of Pharmaceutical Sciences, Vol. 99, No. 1, 2010, pp. 21-50. doi:10.1002/jps.21817
[18] Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma and L. Wan, “Acute Toxicological Effects of Copper Nanoparticles in Vivo,” Toxicology Letters, Vol. 163, No. 2, 2006, pp. 109-120. doi:10.1016/j.toxlet.2005.10.003
[19] M. Simkó, U. Fiedeler, A. Gazsó and M. Nentwich, “The Impact of Nanoparticles on Cellular Functions,” Nano-Trust-Dossier, No. 007, 2011.
[20] S. A. Mousavi, L. Malerod, T. Berg and R. Kjeken, “Clathrin-Dependent Endocytosis,” Biochemical Journal, Vol. 377, No. 1, 2004, pp. 1-16.
[21] H. Pang, P. U. Le and I. R. Nabi, “Ganglioside GM1 Levels Are a Determinant of the Extent of Caveolae/Raft-Dependent Endocytosis of Cholera Toxin to the Golgi Apparatus,” Journal of Cell Science, Vol. 117, No. 8, 2004, pp. 1421-1430.
[22] J. A. Swanson and C. Watts, “Macropinocytosis,” Trends in Cell Biology, Vol. 5, No. 11, 1995, pp. 424-428. doi:10.1016/S0962-8924(00)89101-1
[23] A. K. Bouzier-Sore, E. Ribot, V. Bouchaud, S. Miraux, E. Duguet, S. Mornet, G. Clofent-Sanchez, J. M. Franconi and P. Voisin, “Nanoparticle Phagocytosis and Cellular Stress: Involvement in Cellular Imaging and in Gene Therapy against Glioma,” NMR in Biomedicine, Vol. 23, No. 1, 2010, pp. 88-96. doi:10.1002/nbm.1434
[24] L. W. Zhang and N. A. Monteiro-Riviere, “Mechanisms of Quantum Dot Nanoparticle Cellular Uptake,” Toxicological Sciences, Vol. 110, No. 1, 2009, pp. 138-155. doi:10.1093/toxsci/kfp087
[25] J. S. Chang, K. L. Chang, D. F. Hwang and Z. L. Kong, “In Vitro Cytotoxicitiy of Silica Nanoparticles at High Concentrations Strongly Depends on the Metabolic Activity Type of the Cell Line,” Environmental Science & Technology, Vol. 41, No. 6, 2007, pp. 2064-2068. doi:10.1021/es062347t
[26] R. Hardman, “A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors,” Environmental Health Perspectives, Vol. 114, No. 2, 2006, pp. 165-172. doi:10.1289/ehp.8284
[27] J. Wang, N. Li, L. Zheng, S. Wang, Y. Wang, X. Zhao, Y. Duan, Y. Cui, M. Zhou, J. Cai, S. Gong, H. Wang and F. Hong, “P38-Nrf-2 Signaling Pathway of Oxidative Stress in Mice Caused by Nanoparticulate TiO2,” Biological Trace Element Research, Vol. 140, No. 2, 2011, pp. 186-197. doi:10.1007/s12011-010-8687-0
[28] J. Brooking, S. S. Davis and L. Illum, “Transport of Nanoparticles across the Rat Nasal Mucosa,” Journal of Drug Targeting, Vol. 9, No. 4, 2001, pp. 267-279. doi:10.3109/10611860108997935
[29] F. Dechsakulthorn, A. Hayes, S. Bakand, L. Joeng and C. Winder, “In Vitro Cytotoxicity Assessment of Selected Nanoparticles Using Human Skin Fibroblasts,” Alternatives to Animal Testing and Experimentation, Vol. 14, Special Issue, 2007, pp. 397-400.
[30] L. Braydich-Stolle, S. Hussain, J. J. Schlager and M. C. Hofmann, “In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells,” Toxicological Sciences, Vol. 88, No. 2, 2005, pp. 412-419. doi:10.1093/toxsci/kfi256
[31] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau and W. Jahnen-Dechent, “Size-Dependent Cytotoxicity of Gold Nanoparticles,” Small, Vol. 3, No. 11, 2007, pp. 1941-1949. doi:10.1002/smll.200700378
[32] A. Xu, Y. Chai, T. Nohmi and T. K. Hei, “Genotoxic Responses to Titanium Dioxide Nanoparticles and Fullerene in Gpt Delta Transgenic MEF Cells,” Particle and Fibre Toxicology, Vol. 6, 2009, p. 3.
[33] J. P. Wise, B. C. Goodale, S. S. Wise, G. A. Craig, A. F. Pongan, R. B. Walter, W. D. Thompson, A. K. Ng, A. M. Aboueissa, H. Mitani, M. J. Spalding and M. D. Mason, “Silver Nanospheres Are Cytotoxic and Genotoxic to Fish Cells,” Aquatic Toxicology, Vol. 97, No. 1, 2010, pp. 34-41. doi:10.1016/j.aquatox.2009.11.016
[34] W. H. Suh, K. S. Suslick, G. D. Stucky and Y. H. Suh, “Nanotechnology, Nanotoxicology, and Neuroscience,” Progress in Neurobiology, Vol. 87, No. 3, 2009, pp. 133-170. doi:10.1016/j.pneurobio.2008.09.009
[35] R. B. Lira, M. B. Cavalcanti, M. A. Seabra, D. C. Silva, A. J. Amaral, B. S. Santos and A. Fontes, “Non-Specific Interactions of CdTe/Cds Quantum Dots with Human Blood Mononuclear Cells,” Micron, Vol. 43, No. 5, 2012, pp. 621-626. doi:10.1016/j.micron.2011.11.003
[36] M. Al-Rawi, S. Diabaté and C. Weiss, “Uptake and Intracellular Localization of Submicron and Nano-Sized SiO2 Particles in HeLa Cells,” Archives of Toxicology, Vol. 85, No. 7, 2011, pp. 813-826. doi:10.1007/s00204-010-0642-5
[37] K. Zhou, Y. Wang, X. Huang, K. Luby-Phelps, B. D. Sumer and J. Gao, “Tunable, Ultrasensitive pH-Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells,” Angewandte Chemie International Edition, Vol. 50, No. 27, 2011, pp. 6109-6114. doi:10.1002/anie.201100884
[38] M. R. de Planque, S. Aghdaei, T. Roose and H. Morgan, “Electrophysiological Characterization of Membrane Disruption by Nanoparticles,” ACS Nano, Vol. 5, No. 5, 2011, pp. 3599-3606. doi:10.1021/nn103320j
[39] M. Radu, M. C. Munteanu, S. Petrache, A. I. Serban, D. Dinu, A. Hermenean, C. Sima and A. Dinischiotu, “Depletion of Intracellular Glutathione and Increased Lipid Peroxidation Mediate Cytotoxicity of Hematite Nanoparticles in MRC-5 Cells,” Acta Biochimica Polonica, Vol. 57, No. 3, 2010, pp. 355-360.
[40] C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West and V. L. Colvin, “Nano-C60 Cytotoxicity Is Due to Lipid Peroxidation,” Biomaterials, Vol. 26, No. 36, 2005, pp. 7587-7595. doi:10.1016/j.biomaterials.2005.05.027
[41] T. P. Devasagayam, J. C. Tilak, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi and R. D. Lele, “Free Radicals and Antioxidants in Human Health: Current Status and Future Prospects,” Journal of the Association of Physicians of India, Vol. 52, 2004, pp. 794-804.
[42] Q. Saquib, A. A. Al-Khedhairy, M. A. Siddiqui, F. M. Abou-Tarboush, A. Azam and J. Musarrat, “Titanium Dioxide Nanoparticles Induced Cytotoxicity, Oxidative Stress and DNA Damage in Human Amnion Epithelial (WISH) Cells,” Toxicology in Vitro, Vol. 26, No. 2, 2012, pp. 351-361. doi:10.1016/j.tiv.2011.12.011
[43] S. M. Hussain, A. K. Javorina, A. M. Schrand, H. M. Duhart, S. F. Ali and J. J. Schlager, “The Interaction of Manganese Nanoparticles with PC-12 Cells Induces Dopamine Depletion,” Toxicological Sciences, Vol. 92, No. 2, 2006, pp. 456-463. doi:10.1093/toxsci/kfl020
[44] M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and G. Manivannan, “Selective Toxicity of ZnO Nanoparticles toward Gram-Positive Bacteria and Cancer Cells by Apoptosis through Lipid Peroxidation,” Nanomedicine, Vol. 7, No. 2, 2011, pp. 184-192. doi:10.1016/j.naNo.2010.10.001
[45] J. P. Kamat, T. P. Devasagayam, K. I. Priyadarsini and H. Mohan, “Reactive Oxygen Species Mediated Membrane Damage Induced by Fullerene Derivatives and Its Possible Biological Implications,” Toxicology, Vol. 155, No. 1-3, 2000, pp. 55-61. doi:10.1016/S0300-483X(00)00277-8
[46] L. Fei and S. Perrett, “Effect of Nanoparticles on Protein Folding and Fibrillogenesis,” International Journal of Molecular Sciences, Vol. 10, No. 2, 2009, pp. 646-655. doi:10.3390/ijms10020646
[47] G. R. Beck Jr., S. W. Ha, C. E. Camalier, M. Yamaguchi, Y. Li, J. K. Lee and M. N. Weitzmann, “Bioactive Silica-Based Nanoparticles Stimulate Bone-Forming Osteoblasts, Suppress Bone-Resorbing Osteoclasts, and Enhance Bone Mineral Density in Vivo,” Nanomedicine, Vol. 8, No. 6, 2011, pp. 793-803.
[48] Y. Cui, H. Liu, M. Zhou, Y. Duan, N. Li, X. Gong, R. Hu, M. Hong and F. Hong, “Signaling Pathway of Inflammatory Responses in the Mouse Liver Caused by TiO2 Nanoparticles,” Journal of Biomedical Materials Research A, Vol. 96, No. 1, 2011, pp. 221-229. doi:10.1002/jbm.a.32976
[49] C. C. Berry, S. Charles, S. Wells, M. J. Dalby and A. S. Curtis, “The Influence of Transferrin Stabilised Magnetic Nanoparticles on Human Dermal Fibroblasts in Culture,” International Journal of Pharmaceutics, Vol. 269, No. 1, 2004, pp. 211-225. doi:10.1016/j.ijpharm.2003.09.042
[50] J. H. Kim, C. O. Hong, Y. C. Koo, H. D. Choi and K. W. Lee, “Anti-Glycation Effect of Gold Nanoparticles on Collagen,” Biological & Pharmaceutical Bulletin, Vol. 35, No. 2, 2012, pp. 260-264. doi:10.1248/bpb.35.260
[51] S. Sheikpranbabu, K. Kalishwaralal, K. J. Lee, R. Vaidyanathan, S. H. Eom and S. Gurunathan, “The Inhibition of Advanced Glycation End-Products-Induced Retinal Vascular Permeability by Silver Nanoparticles,” Biomaterials, Vol. 31, No. 8, 2010, pp. 2260-2271. doi:10.1016/j.biomaterials.2009.11.076
[52] X. Lu, J. Qian, H. Zhou, Q. Gan, W. Tang, J. Lu, Y. Yuan and C. Liu, “In Vitro Cytotoxicity and Induction of Apoptosis by Silica Nanoparticles in Human HepG2 Hepatoma Cells,” International Journal of Nanomedicine, Vol. 6, 2011, pp. 1889-1901.
[53] Y. Wang, Y. Han, Y. Yang, J. Yang, X. Guo, J. Zhang, L. Pan, G. Xia and B. Chen, “Effect of Interaction of Magnetic Nanoparticles of FeO and Artesunate on Apoptosis of K562 Cells,” International Journal of Nanomedicine, Vol. 6, 2011, pp. 1185-1192.
[54] A. Kumar, A. K. Pandey, S. S. Singh, R. Shanker and A. Dhawan, “Engineered ZnO and TiO2 Nanoparticles Induce Oxidative Stress and DNA Damage Leading to Reduced Viability of Escherichia coli,” Free Radical Biology & Medicine, Vol. 51, No. 10, 2011, pp. 1872-1881. doi:10.1016/j.freeradbiomed.2011.08.025
[55] J. A. Sergent, V. Paget and S. Chevillard, “Toxicity and Genotoxicity of Nano-SiO2 on Human Epithelial Intestinal HT-29 Cell Line,” The Annals of Occupational Hygiene, Vol. 54, No. 5, 2012, pp. 622-630.
[56] J. A. Bourdon, A. T. Saber, N. R. Jacobsen, K. A. Jensen, A. M. Madsen, J. S. Lamson, H. Wallin, P. Moller, S. Loft, C. L. Yauk and U. B. Vogel, “Carbon Black Nanoparticle Instillation Induces Sustained Inflammation and Genotoxicity in Mouse Lung and Liver,” Particle and Fibre Toxicology, Vol. 9, 2012, p. 5.
[57] M. Wojewódzka, A. Lankoff, M. Dusińska, G. Brunborg, J. Czerwińska, T. Iwaneńko, T. St?pkowski, I. Szumiel and M. Kruszewski, “Treatment with Silver Nanoparticles Delays Repair of X-Ray Induced DNA Damage in HepG2 Cells,” Nukleonika, Vol. 56, No. 1, 2011, pp. 29-33.
[58] B. Kang, M. A. Mackey and M.A . El-Sayed, “Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis,” Journal of the American Chemical Society, Vol. 132, No. 5, 2010, pp. 1517-1519. doi:10.1021/ja9102698
[59] J. Wu and J. Sun, “Investigation on Mechanism of Growth Arrest Induced by Iron Oxide Nanoparticles in PC12 Cells,” Journal of Nanoscience and Nanotechnology, Vol. 11, No. 12, 2011, pp. 11079-11083. doi:10.1166/jnn.2011.3948
[60] A. Mazumder and G. V. Shivashankar, “Gold-Nanoparticle-Assisted Laser Perturbation of Chromatin Assembly Reveals Unusual Aspects of Nuclear Architecture within Living Cells,” Biophysical Journal, Vol. 93, No. 6, 2007, pp. 2209-2216. doi:10.1529/biophysj.106.102202
[61] M. Simkó, A. Gazsó, U. Fiedeler and M. Nentwich, “Nanoparticles, Free Radicals and Oxidative Stress,” NanoTrust-Dossier, No. 012, 2011.
[62] M. Fratelli, L.O. Goodwin, U. A. Orom, S. Lombardi, R. Tonelli, M. Mengozzi and P. Ghezzi, “Gene Expression Profiling Reveals a Signaling Role of Glutathione in Redox Regulation,” Proceedings of the National Academy of Sciences of USA, Vol. 102, No. 39, 2005, pp. 13998-14003. doi:10.1073/pnas.0504398102
[63] M. Takiguchi, W. E. Achanzar, W. Qu, G. Li and M. P. Waalkes, “Effects of Cadmium on DNA-(Cytosine-5) Methyltransferase Activity and DNA Methylation Status during Cadmium-Induced Cellular Transformation,” Experimental Cell Research, Vol. 286, No. 2, 2003, pp. 355-365. doi:10.1016/S0014-4827(03)00062-4
[64] O. Bogdanovic and G. J. Veenstra, “DNA Methylation and Methyl-CpG Binding Proteins: Developmental Requirements and Function,” Chromosoma, Vol. 118, No. 5, 2009, pp. 549-565. doi:10.1007/s00412-009-0221-9
[65] C. Gong, G. Tao, L. Yang, J. Liu, Q. Liu and Z. Zhuang, “SiO2 Nanoparticles Induce Global Genomic Hypomethylation in HaCaT Cells,” Biochemical and Biophysical Research Communications, Vol. 397, No. 3, 2010, pp. 397-400. doi:10.1016/j.bbrc.2010.05.076
[66] J. Conroy, S. J. Byrne, Y. K. Gun’ko, Y. P. Rakovich, J. F. Donegan, A. Davies, D. Kelleher and Y. Volkov, “CdTe Nanoparticles Display Tropism to Core Histones and Histone-Rich Cell Organelles,” Small, Vol. 4, No. 11, 2008, pp. 2006-2015. doi:10.1002/smll.200800088
[67] A. O. Choi, S. E. Brown, M. Szyf and D. Maysinger, “Quantum Dot-Induced Epigenetic and Genotoxic Changes in Human Breast Cancer Cells,” Journal of Molecular Medicine, Vol. 86, No. 3, 2008, pp. 291-302. doi:10.1007/s00109-007-0274-2
[68] A. Brioschi, G. P. Zara, S. Calderoni, M. R. Gasco and A. Mauro, “Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug,” Molecules, Vol. 13, No. 2, 2008, pp. 230-254. doi:10.3390/molecules13020230
[69] Y. Ishii, Y. Hattori, T. Yamada, S. Uesato, Y. Maitani and Y. Nagaoka, “Histone Deacetylase Inhibitor Prodrugs in Nanoparticle Vector Enhanced Gene Expression in Human Cancer Cells,” European Journal of Medicinal Chemistry, Vol. 44, No. 11, 2009, pp. 4603-4610. doi:10.1016/j.ejmech.2009.06.036
[70] N. Sule, R. Singh and D. K. Srivastava, “Alternative Modes of Binding of Recombinant Human Histone Deacetylase 8 to Colloidal Gold Nanoparticles,” Journal of Biomedical Nanotechnology, Vol. 4, No. 4, 2008, pp. 463-468. doi:10.1166/jbn.2008.011
[71] A. Nott and A. Riccio, “Nitric Oxide-Mediated Epigenetic Mechanisms in Developing Neurons,” Cell Cycle, Vol. 8, No. 5, 2009, pp. 725-730. doi:10.4161/cc.8.5.7805
[72] J. H. Shin, S. K. Metzger and M. H. Schoenfisch, “Synthesis of Nitric Oxide-Releasing Silica Nanoparticles,” Journal of the American Chemical Society, Vol. 129, No. 15, 2007, pp. 4612-4619. doi:10.1021/ja0674338
[73] V. Sharma, D. Anderson and A. Dhawan, “Zinc Oxide Nanoparticles Induce Oxidative DNA Damage and ROS-Triggered Mitochondria Mediated Apoptosis in Human Liver Cells (HepG2),” Apoptosis, Vol. 17, No. 8, 2012, pp. 852-870.
[74] J. Zhao, L. Xu, T. Zhang, G. Ren and Z. Yang, “Influences of Nanoparticle Zinc Oxide on Acutely Isolated Rat Hippocampal CA3 Pyramidal Neurons,” Neurotoxicology, Vol. 30, No. 2, 2009, pp. 220-230. doi:10.1016/j.neuro.2008.12.005
[75] X. Q. Zhang, L. H. Yin, M. Tang and Y. P. Pu, “ZnO, TiO2, SiO2, and Al2O3 Nanoparticles-Induced Toxic Effects on Human Fetal Lung Fibroblasts,” Biomedical and Environmental Sciences, Vol. 24, No. 6, 2011, pp. 661-669.
[76] C. Hanley, A. Thurber, C. Hanna, A. Punnoose, J. Zhang and D. G. Wingett, “The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction,” Nanoscale Research Letters, Vol. 4, No. 12, 2009, pp. 1409-1420. doi:10.1007/s11671-009-9413-8
[77] S. Hackenberg, A. Scherzed, A. Technau, M. Kessler, K. Froelich, C. Ginzkey, C. Koehler, M. Burghartz, R. Hagen and N. Kleinsasser, “Cytotoxic, Genotoxic and Pro-Inflammatory Effects of Zinc OxideNanoparticles in Human Nasal Mucosa Cells in Vitro,” Toxicology in Vitro, Vol. 25, No. 3, 2011, pp. 657-663. doi:10.1016/j.tiv.2011.01.003
[78] B. L’Azou, J. Jorly, D. On, E. Sellier, F. Moisan, J. Fleury-Feith, J. Cambar, P. Brochard and C. Ohayon-Courtes, “In Vitro Effects of Nanoparticles on Renal Cells,” Particle and Fibre Toxicology, Vol. 5, 2008, p. 22.
[79] E. Belade, L. Armand, L. Martinon, L. Kheuang, J. Fleury-Feith, A. Baeza-Squiban, S. Lanone, M. A. Billon-Galland, J. C. Pairon and J. Boczkowski, “A Comparative Transmission Electron Microscopy Study of Titanium Dioxide and Carbon Black Nanoparticles Uptake in Human Lung Epithelial and Fibroblast Cell Lines,” Toxicology in Vitro, Vol. 26, No. 1, 2012, pp. 57-66. doi:10.1016/j.tiv.2011.10.010
[80] J. Catalan, H. Jarventaus, M. Vippola, K. Savolainen and H. Norppa, “Induction of Chromosomal Aberrations by Carbon Nanotubes and Titanium Dioxide Nanoparticles in Human Lymphocytes in Vitro,” Nanotoxicology, Vol. 6, 2011, pp. 825-836.
[81] T. Hasezaki, K. Isoda, M. Kondoh, Y. Tsutsumi and K. Yagi, “Hepatotoxicity of Silica Nanoparticles with a Diameter of 100 nm,” Pharmazie, Vol. 66, No. 9, 2011, pp. 698-703.
[82] J. Wu, C. Wang, J. Sun and Y. Xue, “Neurotoxicity of Silica Nanoparticles: Brain Localization and Dopaminergic Neurons Damage Pathways,” ACS Nano, Vol. 5, No. 6, 2011, pp. 4476-4489. doi:10.1021/nn103530b
[83] A. Panas, C. Marquardt, O. Nalcaci, H. Bockhorn, W. Baumann, H. R. Paur, S. Mulhopt, S. Diabate and C. Weiss, “Screening of Different Metal Oxide Nanoparticles Reveals Selective Toxicity and Inflammatory Potetial of Silica Nanoparticles in Lung Epithelial Cells and Macrophages,” Nanotoxicology, 2012, in Press. doi:10.3109/17435390.2011.652206
[84] A. Lankoff, M. Arabski, A. Wegierek-Ciuk, M. Kruszewski, H. Lisowska, A. Banasik-Nowak, K. Rozga-Wijas, M. Wojewodzka and S. Slomkowski, “Effect of Surface Modification of Silica Nanoparticles on Toxicity and Cellular Uptake by Human Peripheral Blood Lymphocytes in Vitro,” Nanotoxicology, 2012, in Press. doi:10.3109/17435390.2011.649796
[85] I. Iavicoli, V. Leso, L. Fontana and A. Bergamaschi, “Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of in Vitro Mammalian Studies,” European Review for Medical and Pharmacological Sciences, Vol. 15, No. 5, 2011, pp. 481-508.
[86] I. Pujalte, I. Passagne, B. Brouillaud, M. Treguer, E. Durand, C. Ohayon-Courtes and B. L’Azou, “Cytotoxicity and Oxidative Stress Induced by Different Metallic Nanoparticles on Human Kidney Cells,” Particle and Fibre Toxicology, Vol. 8, 2011, p. 10.
[87] G. C. Falck, H. K. Lindberg, S. Suhonen, M. Vippola, E. Vanhala, J. Catalan, K. Savolainen and H. Norppa, “Genotoxic Effects of Nanosized and Fine TiO2,” Human & Experimental Toxicology, Vol. 28, No. 6-7, 2009, pp. 339-352. doi:10.1177/0960327109105163
[88] M. L. Jugan, S. Barillet, A. Simon-Deckers, S. Sauvaigo, T. Douki, N. Herlin and M. Carriere, “Cytotoxic and Genotoxic Impact of TiO2 Nanoparticles on A549 Cells,” Journal of Biomedical Nanotechnology, Vol. 7, No. 1, 2011, pp. 22-23. doi:10.1166/jbn.2011.1181
[89] L. P. Sycheva, V. S. Zhurkov, V. V. Iurchenko, N. O. Daugel-Dauge, M. A. Kovalenko, E. K. Krivtsova and A. D. Durnev, “Investigation of Genotoxic and Cytotoxic Effects of Micro-and Nanosized Titanium Dioxide in Six Organs of Mice in Vivo,” Mutation Research, Vol. 726, No. 1, 2011, pp. 8-14. doi:10.1016/j.mrgentox.2011.07.010
[90] M. A. Abdelhalim and B. M. Jarrar, “Gold Nanoparticles Administration Induced Prominent Inflammatory, Central Vein Intima Disruption, Fatty Change and Kupffer Cells Hyperplasia,” Lipids in Health and Disease, Vol. 10, 2011, p. 133.
[91] M. A. Abdelhalim, “Gold Nanoparticles Administration Induces Disarray of Heart Muscle, Hemorrhagic, Chronic Inflammatory Cells Infiltrated by Small Lymphocytes, Cytoplasmic Vacuolization and Congested and Dilated Blood Vessels,” Lipids in Health and Disease, Vol. 10, 2011, p. 233.
[92] J. H. Sung, J. H. Ji, J. D. Park, M. Y. Song, K. S. Song, H. R. Ryu, J. U. Yoon, K. S. Jeon, J. Jeong, B. S. Han, Y. H. Chung, H. K. Chang, J. H. Lee, D. W. Kim, B. J. Kelman and I. J. Yu, “Subchronic Inhalation Toxicity of Gold Nanoparticles,” Particle and Fibre Toxicology, Vol. 8, 2011, p. 16.
[93] J. J. Li, S. L. Lo, C.T. Ng, R. L. Gurung, D. Hartono, M. P. Hande, C. N. Ong, B. H. Bay and L. Y. Yung, “Genomic Instability of Gold Nanoparticle Treated Human Lung Fibroblast Cells,” Biomaterials, Vol. 32, No. 23, 2011, pp. 5515-5523. doi:10.1016/j.biomaterials.2011.04.023
[94] Z. Zhang, R. D. Ross and R. K. Roeder, “Preparation of Functionalized Gold Nanoparticles as a Targeted X-Ray Contrast Agent for Damaged Bone Tissue,” Nanoscale, Vol. 2, No. 4, 2010, pp. 582-586. doi:10.1039/b9nr00317g
[95] W. K. Khalil, E. Girgis, A. N. Emam, M. B. Mohamed and K. V. Rao, “Genotoxicity Evaluation of Nanomaterials: DNA Damage, Micronuclei, and 8-Hydroxy-2-deoxyguanosine Induced by Magnetic Doped CdSe Quantum Dots in Male Mice,” Chemical Research in Toxicology, Vol. 24, No. 5, 2011, pp. 640-650. doi:10.1021/tx2000015
[96] A. Dhawan, J. S. Taurozzi, A. K. Pandey, W. Shan, S. M. Miller, S. A. Hashsham and V. V. Tarabara, “Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity,” Environmental Science & Technology, Vol. 40, No. 23, 2006, pp. 7394-7401. doi:10.1021/es0609708
[97] S. M. Moghimi, A. C. Hunter and J. C. Murray, “Long-Circulating and Target-Specific Nanoparticles: Theory to Practice,” Pharmacological Reviews, Vol. 53, No. 2, 2001, pp. 283-318.
[98] K. Sanderson, “Gold Nanoparticles Revealed,” Nature, 2007, p. 178. doi:10.1038/news.2007.178
[99] P. Thevenot, J. Cho, D. Wavhal, R. B. Timmons and L. Tang, “Surface Chemistry Influences Cancer Killing Effect of TiO2 Nanoparticles,” Nanomedicine, Vol. 4, No. 3, 2008, pp. 226-236. doi:10.1016/j.nano.2008.04.001
[100] P. V. AshaRani, G. L. K. Mun, M. P. Hande and S. Valiyaveettil, “Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells,” ACS Nano, Vol. 3, No. 2, 2009, pp. 279-290.
[101] V. K. Raghunathan, S. Hawkins, C. P. Case, S. Mann, S. Davis and J. Lane, “Factors That May Affect the Nanotoxicology of Hard Materials for Surgical Applications, Characterising the Potential. Risks posed by Engineered Nanoparticles,” A Second UK Government Research Report Programme project (079/0006), DEFRA 2011. http://www.defra.gov.uk
[102] M. Dance, “The Use of Targeted Charge-Reversal Nanoparticles (TCRNS) to Investigate Nuclear Delivery of Fluorescent Agents to Cancer Cells: Implications for Novel Prostate and Breast Cancer Therapy,” Virginia Commonwealth University, Richmond, 2011. http://hdl.handle.net/10156/13587
[103] C. T. Ng, S. T. Dheen, W. C. Yip, C. N. Ong, B. H. Bay and L. Y. L. Yung, “The Induction of Epigenetic Regulation of PROS1 Gene in Lung Fibroblasts by Gold Nanoparticles and Implications for Potential Lung Injury,” Biomaterials, Vol. 32, No. 30, 2011, pp. 7609-7615. doi:10.1016/j.biomaterials.2011.06.038
[104] E. Oberd?rstera, S. Zhuc, T. M. Blickleyb, P. McClellan-Greend and M. L. Haaschc, “Ecotoxicology of Carbon-Based Engineered Nanoparticles: Effects of Fullerene (C60) on Aquatic Organisms,” Carbon, Vol. 44, No. 6, 2006, pp. 1112-1120. doi:10.1016/j.carbon.2005.11.008
[105] H. Sneh-Edri, D. Likhtenshtein and D. Stepensky, “Intracellular Targeting of PLGA Nanoparticles Encapsulating Antigenic Peptide to the Endoplasmic Reticulum of Dendritic Cells and Its Effect on Antigen Cross-Presentation in Vitro,” Molecular Pharmaceutics, Vol. 8, No. 4, 2011, pp. 1266-1275. doi:10.1021/mp200198c
[106] X. L. Song, B. Li, K. Xu, J. Liu, W. Ju, J. Wang, X. D. Liu, J. Li and Y. F. Qi, “Cytotoxicity of Water-Soluble mPEG-SH-Coated Silver Nanoparticles in HL-7702 Cells,” Cell Biology and Toxicology, Vol. 28, No. 4, 2012, pp. 225-237. doi:10.1007/s10565-012-9218-x
[107] T. H. Kim, M. Kim, H. S. Park, U. S. Shin, M. S. Gong and H. W. Kim, “Size-Dependent Cellular Toxicity of Silver Nanoparticles,” Journal of Biomedical Materials Research Part A, Vol. 100, No. 4, 2012, pp. 1033-1043. doi:10.1002/jbm.a.34053
[108] A. K. Patlollal, D. Hackett and P. Tchounwou, “Genotoxicity Study of Silver Nanoparticles in Bone Marrow Cells of Sprague-Dawley Rats,”7th International Symposium on Recent Advances in Environmental Health Research, Jackson, 12-15 September 2010. http://ehr.cset.jsums.edu/7cd/OralPdf/Oral%2011.pdf
[109] M. Mahmoudi, S. Laurent, M. A. Shokrgozar and M. Hosseinkhani, “Toxicity Evaluations of Superparamagnetic Iron Oxide Nanoparticles: Cell ‘Vision’ versus Physicochemical Properties of Nanoparticles,” ACS Nano, Vol. 5, No. 9, 2011, pp. 7263-7276. doi:10.1021/nn2021088
[110] A. K. Gupta and M. Gupta, “Cytotoxicity Suppression and Cellular Uptake Enhancement of Surface Modified Magnetic Nanoparticles,” Biomaterials, Vol. 26, No. 13, 2005, pp. 1565-1573. doi:10.1016/j.biomaterials.2004.05.022

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.