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ABSTRACT. Protein folding is recognized as a critical problem in 
the field of biophysics in the 21st century. Predicting protein-folding 
patterns is challenging due to the complex structure of proteins. In 
an attempt to solve this problem, we employed ensemble classifiers 
to improve prediction accuracy. In our experiments, 188-dimensional 
features were extracted based on the composition and physical-chemical 
property of proteins and 20-dimensional features were selected using 
a coupled position-specific scoring matrix. Compared with traditional 
prediction methods, these methods were superior in terms of prediction 
accuracy. The 188-dimensional feature-based method achieved 71.2% 
accuracy in five cross-validations. The accuracy rose to 77% when we 
used a 20-dimensional feature vector. These methods were used on 
recent data, with 54.2% accuracy. Source codes and dataset, together 
with web server and software tools for prediction, are available at: 
http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.
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INTRODUCTION

Proteomics has garnered more interest than genomics in the post-genomic era. Protein 
is an essential component in cells. Protein structure prediction and functional analysis are al-
ways the cores of bioinformatics research topics, and functional analysis always relies on struc-
ture prediction. However, it is difficult, costly, and not always feasible for all the proteins to 
obtain a tertiary structure through experimental means, and the accuracy of secondary structure 
prediction has, for a long time, been at a bottleneck. Folding pattern prediction falls somewhere 
in the middle of secondary structure prediction and tertiary structure prediction, which are 
directly related to function analysis. Therefore, increasing the accuracy of folding pattern pre-
diction is essential. Studies have shown that the development of new drugs (Vendruscolo and 
Dobson, 2005), cancer research (Honda et al., 2005), and human immunodeficiency virus thera-
pies (Boisvert et al., 2008) all require accurate prediction of associated protein folding patterns.

Although nuclear magnetic resonance is a powerful technique for determining mem-
brane protein structures (Call et al., 2006; Douglas et al., 2007; Schnell and Chou, 2008), 
it requires expensive equipment and as much or more time than other methods. Homology 
modeling techniques (Chou, 2004), which are intended to develop decent models and provide 
structural information in a timely manner, have been widely used in drug design (Gao et al., 
2007; Li et al., 2007). A hurdle occurs, however, when the query protein has no homologous 
protein of known structure in the existing databases.

Shen and Chou (2006) resorted to a taxonomic approach with underpinning based 
on the assumption that the number of protein folds is limited. Their study established a pre-
diction web server called PFP-Pred, but its overall success rate on a stringent benchmark 
dataset (Ding and Dubchak, 2001) was just 62%. Two additional predictors have since been 
developed with success rates of 61.1% (Nanni, 2006) and 68.4% (Chen and Kurgan, 2007). 
In 2009, a predictor called PFP-FunDSeqE (Shen and Chou, 2009) implemented an approach 
that combines functional domain and sequential evolution information through a fusion en-
semble classifier; the success rate reached 70.5%. However, the dimensionality of the feather 
space was relatively high. Ding and Dubchak (2001) proposed 125 feathers, and Shen and 
Chou (2006) proposed 283, but only 313 training samples and 385 testing samples were used 
in the experimental evaluation. Although it has relatively high accuracy, PFP-FunDSeqE is 
time-consuming and presents challenges when dealing with large amounts of data. To solve 
these problems, we propose two kinds of feature extraction methods, of which one is designed 
for accuracy and the other to work quickly and maintain robust performance. Then, the ensem-
ble learning method is used to improve performance for multi-class classification problems.

MATERIAL AND METHODS

Dataset

We chose two datasets for the experiments. One was the latest data in the SCOP 
database (Murzin et al., 1995) and the other was the same dataset as that in the PFP-Pred 
and PFP-FunDSeqE databases, which contain 311 proteins for training and 383 proteins for 
testing. None of the proteins in the testing dataset has more than 35% sequence similarity to 
those in the training dataset. According to the SCOP database these proteins can be further 
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categorized into the following 27-fold types: 1) globin-like, 2) cytochrome c, 3) DNA-bind-
ing 3-helical bundle, 4) 4-helical up-and-down bundle, 5) 4-helical cytokines, 6) EF-hand, 7) 
immunoglobulin-like, 8) cupredoxins, 9) viral coat and capsid proteins, 10) concanavalin A-
like lectin/glucanases, 11) SH3-like barrel, 12) oligonucleotide/oligosaccharide-binding-fold, 
13) β-trefoil, 14) trypsin-like serine proteases, 15) lipocalins, 16) triosephosphate isomerase 
barrel, 17) flavin adenine dinucleotide (also nicotinamide adenine dinucleotide-binding mo-
tif), 18) flavodoxin-like, 19) nicotinamide adenine dinucleotide phosphate-binding Rossmann 
fold, 20) P-loop, 21) thioredoxin-like, 22) ribonuclease H-like motif, 23) hydrolases, 24) peri-
plasmic binding protein-like, 25) β-grasp, 26) ferredoxin-like, and 27) small inhibitors, toxins, 
and lectins. Of these fold types, types 1-6 belong to the α structural class, types 7-15 to the β 
class, types 16-24 to the α/β class, and types 25-27 to the α+β class.

Feature extraction method

Feature extraction methods for protein sequence, which are important in the machine 
learning method for protein or structure function prediction, can be divided into two catego-
ries: one is calculated from a position-specific scoring matrix (PSSM; Schaffer et al., 2001; 
Pu et al., 2007), and the other is extracted from amino acid composition-position or physical-
chemical properties. Because PSSM needs to be computed from the Basic Local Alignment 
Search Tool (BLAST) result, it is more a time-consuming method than extraction from amino 
acid properties.

We used both feature extraction methods in our study. We extracted the same 188 
composition-position and physical-chemical property features as those of SVMProt (Cai et 
al., 2003), including hydrophobicity, normalized van der Waals volume, polarity, polarizabil-
ity, charge, surface tension, secondary structure, and solvent accessibility, which are proven 
to work well for protein function prediction. We also calculated 20 features based on a PSSM 
as follows.

For every site in the given protein sequence, we calculated the possibility of replac-
ing it with 20 types of amino acids from the Swiss-Prot database. We performed a BLAST 
analysis (blastpgp program) and put the resulting sequence into the Swiss-Prot database to get 
the PSSM. Then, we computed the average replaced possibility for all 20 amino acids and for 
the final 20 features.

Ensemble classification method

Studies have shown that choosing the appropriate ensemble classifiers can improve 
the accuracy of prediction in weak classification problems. In addition, the base classifier dif-
ferentiation also helps to improve the performance of voting systems. We demonstrate an en-
semble with two base classifiers that performs better in individual prediction. Because protein 
fold pattern prediction is a multi-class classification problem, the final result depends on the 
sum of the probabilities of the individual base classifiers.

Given the special nature of the data, we used various classifiers to achieve better 
results. We selected logistic model trees (LMT; Niels et al., 2005) and random forests (RF; 
Breimin, 2001) as base classifiers in 188-dimensional (D) experiments. For the 20-D experi-
ments, we selected SimpleLogistic (Sumner et al., 2005) and RF.
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In ensemble classifiers in general, binary classification can use the vote strategy 
to predict the final result. However, this strategy is unsuitable for multi-class classifica-
tion. In this study, we used the strategy of probability weighting. Each basic classifier 
predicts the test sample and outputs the probability of each class. The final result of the 
ensemble classifier indicates the class with the highest sum of probability. The flow is 
shown in Figure 1.

Figure 1. Multi-class ensemble strategy.
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RESULTS

Comparison with related studies

Many researchers have published related studies, and we performed tests on the same 
benchmark dataset (Nanni, 2006; Chen and Kurgan, 2007; Shen and Chou, 2006, 2009). The 
highest prediction accuracy rate of the other studies is only 70.5% (Shen and Chou, 2009). 
In our study, the accuracy of the 188-D feature was 71.2% and rose to 77% when the PSSM 
method was used. This rate is much higher than that reported in other studies. The comparison 
is shown in Figure 2.

Figure 2. Comparison of six protein fold pattern recognition methods.

First, we extracted 188-D features for every protein in our dataset, including the train-
ing and testing sets; then, we predicted the whole dataset with each classifier using 5-fold 
cross-validation. The classifiers that performed well were chosen to build our ensemble clas-
sifier. Our previous experiments had shown that naive Bayes, RF, SimpleLogistic, and LMT 
have a relatively high accuracy in our prediction. We tried 2 and 3 classifiers to compose an 
ensemble classifier. We achieved the highest accuracy when LMT and RF were chosen as ba-
sic classifiers; accuracy of the 2-classifier ensemble classifier reached 71.2%. Meanwhile, the 
3-classifier ensemble classifier performed at an accuracy of no more than 70.5%. Hence, the 
ensemble classifier of LMT and RF outperformed others in our experiment, and it also worked 
well with regard to time and efficiency.

For the 20-D features, we extracted features for each sequences and used a method 
similar to that outlined above with 5-fold cross-validation to select basic classifiers for the 
ensemble. In this experiment, functional trees (FT), RF, SimpleLogistic, and LMT performed 
better than did the others. In our test of the 2-classifier ensemble classifier, the ensemble clas-
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sifier consisted of SimpleLogistic and RF and reached 77% accuracy, which was an improve-
ment compared with that of the 188-D features. The best accuracy for the 3-classifier ensemble 
classifier was 75.9%.

Performance on different classifiers

Compared with other studies, the performance of our features proved their valid-
ity. Therefore, we tried to prove the superiority of our ensemble classifier. To show that 
the selected base classifiers in the classification are good choices, we performed a 5-fold 
cross-validation on the entire dataset with different classifiers. Their performance on 4-fold 
patterns with the same 188-D features is shown in Table 1, whereas the performance with 
20-D features is shown in Table 2. We compared our ensemble classifier with commonly 
used classifiers, including RF, decision tree (J48), naive Bayes, and K nearest neighbor (IB1), 
among others. Our experiments showed that the establishment of the ensemble classifiers was 
accurate and effective.

Classifiers	 all-α			   all-β			   α/β			   α+β

	 Precision	 Recall	 AUC	 Precision	 Recall	 AUC	 Precision	 Recall	 AUC	 Precision	 Recall	 AUC

SMO	 0.604	 0.593	 0.795	 0.703	 0.651	 0.789	 0.725	 0.826	 0.848	 0.654	 0.515	 0.852
SimpleLogistic	 0.659	 0.537	 0.859	 0.736	 0.716	 0.844	 0.748	 0.852	 0.893	 0.633	 0.576	 0.895
RF	 0.636	 0.519	 0.803	 0.556	 0.679	 0.726	 0.711	 0.748	 0.857	 0.625	 0.627	 0.795
J48	 0.511	 0.444	 0.695	 0.512	 0.578	 0.668	 0.658	 0.652	 0.76	 0.593	 0.485	 0.792
NB	 0.4	 0.333	 0.702	 0.646	 0.468	 0.757	 0.616	 0.809	 0.869	 0.5	 0.545	 0.859
IB1	 0.545	 0.222	 0.592	 0.634	 0.413	 0.642	 0.49	 0.896	 0.675	 0.625	 0.152	 0.57
Our ensemble classifier	 0.737	 0.519	 0.74	 0.726	 0.78	 0.811	 0.741	 0.87	 0.845	 0.81	 0.515	 0.75

SMO = sequential minimal optimization; RF = random forests; J48 = decision tree; NB = naive Bayes; IB1 = K 
nearest neighbor.

Table 1. Performance of different classifiers on protein fold pattern recognition (188-D features).

Performance on the latest data

We updated the data and retested our method. The former dataset has 311 proteins 
in the training dataset and 383 proteins in the testing dataset. The latest data contain 1067 α 
structural proteins, 1034 β structural proteins, 1471 α/β proteins, and 1588 α+β proteins (data 
from SCOP, August 20, 2011). Some protein sequences were not found in the Universal Pro-

Classifiers	 all-α			   all-β			   α/β			  α+β

	 Precision	 Recall	 AUC	 Precision	 Recall	 AUC	 Precision	 Recall	 AUC	 Precision	 Recall	 AUC

SMO	 0.857	 0.556	 0.88	 0.682	 0.826	 0.829	 0.707	 0.817	 0.826	 1	 0.333	 0.734
SimpleLogistic	 0.848	 0.722	 0.927	 0.746	 0.807	 0.911	 0.754	 0.852	 0.909	 0.882	 0.455	 0.805
RF	 0.667	 0.556	 0.815	 0.68	 0.798	 0.863	 0.746	 0.791	 0.895	 0.875	 0.424	 0.571
J48	 0.423	 0.407	 0.626	 0.667	 0.642	 0.746	 0.664	 0.704	 0.762	 0.531	 0.515	 0.761
NB	 0.773	 0.315	 0.789	 0.523	 0.716	 0.745	 0.646	 0.461	 0.791	 0.345	 0.606	 0.768
IB1	 0.806	 0.463	 0.72	 0.686	 0.661	 0.749	 0.662	 0.852	 0.799	 0.778	 0.636	 0.807
Our ensemble classifier	 0.841	 0.685	 0.829	 0.728	 0.761	 0.804	 0.73	 0.87	 0.84	 0.938	 0.455	 0.725

For abbreviations, see legend to Table 1.

Table 2. Performance of different classifiers on protein fold pattern recognition (20-D features).



180

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (1): 174-181 (2012)

W. Chen et al.

tein Database, so they were removed, leaving 711 α structural proteins, 695 β proteins, 929 α/β 
proteins, and 973 α+β proteins in our training set Φ.

βαβαβα +Φ∪Φ∪Φ∪Φ=Φ /                           (Equation 1)

We used the PSSM method to process the dataset, and classification via regression and 
sequential minimal optimization (SMO) was then selected to combine the ensemble classifier. 
The final accuracy reached 54.2% with 5-fold cross-validation.

DISCUSSION

We extracted 20- and 188-D features from protein sequences using composition-po-
sition and physical-chemical properties. The performance of the 20-D features was more ac-
curate, whereas the extraction of the 188-D features was much faster. The results show that our 
method is feasible and greatly improves the efficiency of prediction.

An ensemble classifier is used to solve the protein fold recognition. Experiments show 
that this method achieved very good results. Compared with other identification methods, the 
ensemble classifier has many advantages, including short running time, features coming from 
only the test sequence, and better accuracy. Meanwhile, we have developed an online server and 
a software tool that can be downloaded and run on a personal computer. The open source soft-
ware can be accessed for free at http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.
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