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ABSTRACT 
 
 In this paper, we have introduced few Interconnection Networks, called David Derived Network DD(n) , 

Dominating David Derived Network DDD(n),  Honeycomb cup Network  HCC(n) and  Kite Regular 

Trianguline Mesh KRrTM(n). We have given drawing algorithm for DDD(n) from Honeycomb network 

HC(n) and embedded poly–Honeycomb Networks, KRrTM(n)  in to Dominating David Derived Networks. 

Also we have investigated the metric dimension of Star of David  network SD(n) and lower bound of the 

metric dimension for DD(n). 
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1. INTRODUCTION 

 

In interconnection networks, the simulation of one architecture by another is important. The 

problem of simulating one network by another is modeled as a graph embedding problem. We  

know that the communication pattern of an algorithm can be modeled by a graph. Thus, the 
implementation of an algorithm in a system is an embedding of communication pattern of the 

algorithm into the network. There are several applications that can be modeled as a graph 

embedding problem. For example, the problem of finding efficient storage representations for 

data structures, where both storage representations and data structures are represented as graphs, 

is also reduced to a graph embedding problem. The problem of laying out circuits on VLSI chips 

can also be formulated as a graph embedding problem.[1].  
 

A metric basis  for a graph G  is a subset of vertices W ⊆ V such that for each pair of vertices u 

and v of V \ W, there is a vertex w ∈ W such that the distance between u and w is not equal to  the 
distance between v and w that is d(u, w) ≠ d(v, w). The cardinality of a metric basis of G is called 

metric dimension and is denoted by β(G). The members of a  metric basis are called landmarks. 

A metric dimension  problem is to find a metric basis.  
 

1.1  OVERVIEW  
 

Graph embeddings have been well studied for meshes into crossed cubes [16], binary trees into  

paths [12], binary trees into hypercubes [11,15], complete binary trees into hypercubes[17], 

incomplete hypercube in books [13], tori and grids into twisted cubes [18], meshes into locally 
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twisted cubes [19], meshes into faulty crossed cubes [20], generalized ladders into hypercubes 

[21], grids into grids [22], binary trees into grids [23], hypercubes into cycles [24,25], star graph 

into path [26], snarks into torus [27], generalized wheels into arbitrary trees [28], hypercubes into 

grids [6], m-sequential k-ary trees into hypercubes [29], meshes into Möbius cubes [30], ternary 

tree into hypercube [31], enhanced and augmented hypercube into complete binary tree [32], 
circulant into arbitrary trees, cycles, certain multicyclic graphs and ladders [33], hypercubes into 

cylinders, snakes and caterpillars [34]. In this paper, we give some embeddings of Poly 

Honeycomb networks into DDD(n) and DDD(n) into Dominating Silicate network DSL(n) for 

particular dimensions.  

 

The first paper on the notion of metric basis appeared as early as 1975 under the name ‘locating 

set’[52] . Slater [52,53] introduced this idea to determine uniquely the location of an intruder in a 

network[55]. Harary and Melter [46] and Khuller et al. [48] discovered this concept 

independently and used the term metric basis.  This concept was rediscovered by Chartrand et al. 

[54] and also by Johnson [47] of the Pharmacia Company while attempting to develop a 

capability of large datasets of chemical graphs. It was noted in [45] that determining the metric 
dimension problem (resolving number) of a graph is an NP-complete problem. It has been proved 

that this problem is NP-hard [48] for general graphs. Manuel et al. [49] have shown that the 

problem remains NP-complete for bipartite graphs. This problem has been studied for trees, 

multi-dimensional grids [48], Petersen graphs [42], torus networks [51], Benes networks [49], 

honeycomb networks [50], enhanced hyper cubes [43], and Illiac networks [44]. In this paper we 

have investigated the metric dimension of SD(n)  and lower bound for the metric dimension of 

DD(n). 
 

Definition: 1.1 
 

Let  G and H  be two finite graphs with γ vertices.  V(G) and V(H) denote the vertex  set of G and 

H respectively.  E(G) and  E(H) denote the edge set of G and H respectively.  An embedding from 

G to H is defined [2] as follows. 

 

1. f   is a bijective  map from  V(G)  → V(H)  

 

2. f  is a one to one map from E(G) to { Pf ( f(u) , f(v)) : Pf ( f(u) , f(v)) is a path in H  between  f(u) 

and  f(v) }. 

 

Dilation of embedding of G in to H is given by ( ) ( ) ( )( ) ( )      { | | (,   :  ,  ) }.
f

Dil f Max P f u f v u v E G= ∈

Where ( ) ( )( )  ,  
f

P f u f v
 
denotes length of the path Pf   in H.  Then the dilation of G in to H is 

defined as Dil (G , H) = min Dil(f). Where the minimum is taken over all embedding  f of G in to 

H. Embedding G into H with minimum dilation is important for network design and for the 

simulation of one computer architecture by another [3]. Embeddings as mathematical models of 

parallel computing have been discussed extensively in the literature [4,5]. In these models, both 

the algorithm to be implemented and the interconnection network of the parallel computing 

system are represented by graphs. The implementation details are then studied through the 

embedding. 

 

1.2 STAR OF DAVID 

 

In this section we consider Star of David which is a hexagram [8]. 

 
 



International journal on applications of graph theory in wireless ad hoc networks and sensor networks 

(GRAPH-HOC) Vol.4, No.4, December 2012 

13 

 

 

Figure1. Star of David. 

 

 

[6] Figure 2. Star of David graph  

 

                Here after we call this graph as Star of  David network with dimension one SD(1). 

 

 

 

Figure3. David Derived graph (or Network) of dimension one. DD(1) 
 

                                                    

    Figure 4. Isomorphic graph of DD(1).             Figure 5. David Derived network   DD(1)   
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Figure 6. David Derived network of dimension two DD(2). 

 

2. DRAWING ALGORITHM FOR DDD(n) 

 
Step-1: Consider a honeycomb network HC(n)  of  dimension  n.  

Step-2: Split each edge of HC(n) into two by inserting a new vertex  .  

Step-3: In each hexagon cell, connect the new vertices  by an edge if  they are at a distance of 4     

             units within the cell. 

Step-4: Place vertices at new edge crossings. 

Step- 5: Remove initial vertices and edges of Honeycomb network. 

Step- 6: Split each horizontal edge into two edges by inserting a new vertex. The resulting graph 

is called Dominating David Derived network. 

 

2.1 Drawing method of DDD(2)   from HC(2) 

 

 

 

 

 

Figure 7. Step-1                           Figure 8.   Step-2 
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Figure 9. Step-3                           Figure 10.   Step-4 

 

 

                              Figure 11. Step-5                                                         Step-6  

                                                                                             Figure 12. DDD(2) 

 

 

Figure 13. Isomorphic graph of   DDD(2) 
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Figure 14  DDD(3) 

 

Figure15.  Euler circuit of DDD(2) 

Blue→ Pink → Aqua → Brown → Orange 

→ Yellow → lavender → Lime → Red  → Blue. 

 

The first Dominating  David Derived network  D1(1) can be obtained by connecting vertices of 

degree two  by an edge, which are not  in the boundary or in unbounded dual of  DD(1). See 
figure16. 

 

 

Figure16.  D1(1) 
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Figure 17.  D1(2) 

 

Figure 18.  D1(3) 

 

Second Dominating David derived network of dimension one D2(1) can obtained by sub dividing 

once the new edge introduced in D1(1).  See Figure 19. Third Dominating David derived network 

of dimension one  can be obtained from D1(1) by introducing parallel path of length 2 between 

vertices of degree two which are not in boundary. See figure 20 (b) for third Dominating David 
Derived network of dimension two D3(2). 

 

Figure 19.  D2(1) 
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                    Figure 20(a)  DDD(2)                                 Figure 20(b)  D3(2) 
 

 

  Figure 21(a)  Honeycomb cup network HCC(1)              Figure 21 (b)   HCC(2) 

 

 

    Figure 22(a). HC(4) as a sub graph in  HCC(4)          (b) HCC(4) embedded in  D2(4) 
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Figure23. HReM (11 , 8)  is embedded in  D2(4)  with dilation 2. 

 

 

                  

       

    Figure 24.HRoMs(7) is embedded in  D2(4) with dilation 2. 

 

 

 

 

 

Figure 25. Honeycomb Regular Triangulene Mesh HRrTM(3). 
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Figure26. HRrTM(9) embedded in  D2(4) with dilation 2. 

 

 

 

 

Figure27. Kite Regular Trianguline Mesh  KRrTM(3) 

 
 

   

 

Figure 28. KRrTM(10) is  embedded in D2(4) with dilation 2. 
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Figure 29. DDD(2) is  embedded in to Dominating Silicate Network DSL(2) with dilation 1. 
 

3. COMPARISON OF NETWORKS 
 

TABLE 1 

 

Network  Vertices Edges Faces 

[7] HReM(t’,t’’) 2t’t’’ 3t’t’’-t’-t’’ t’t’’- t’-t’’+2 

[7] HRoMs( t ) 2 2
t  2

3 2t t−  2
2 2t t− +  

HRrTM(n) 2 4 1, 2n n n+ + ≥  23( 3 ) / 2n n+  
2( 2) / 2n n+ +  

KRrTM(n) 2(5 13 2) / 2n n+ +  24 8n n+
 

2(3 3 2) / 2n n+ +  

HCC(n) 2
2(3 4 1)n n+ +  29 9 1n n+ +  23 1n n+ +  

DD(n) 215 3n n+  224n  29 3 2n n− +  

DDD(n) 215 3 6n n− +  
224 6 6n n− +  

29 3 2n n− +  

D1(n) 215 3 6n n− +  
233 19 11n n− +  

218 16 7n n− +  

D2(n) 224 16 11n n− +  
242 32 16n n− +  

218 16 7n n− +  

         D3(n) 233 29 16n n− +  
260 58 26n n− +  

227 29 12n n− +  

        SD(n) 2
(51 37 10)/ 2n n− +

 

2
(51 61 26) / 2n n− +

 

251 49 16n n− +  
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TABLE-2 

 

Network Degree       Diameter               Communication  Cost 

[7] HC(n) 3 4n-1 12n-3 

[7] HReM(t’,t’’) 3 2 ’’  ’ 2  2 ’’  ’ 

 2 ’ 2    

t t for t t

and t otherwise

+ − ≥

−
 (6 ’’  3 ’ 6)  2 ’’  ’ 

 (6 ’ 6)   

t t for t t

and t otherwise

+ − ≥

−  

[7] HRoMs(t) 3 4 3t −  12t - 9 

HCC(n) 3 4 3n +  12n + 9 

DD(n) 4 6n  24n 

DDD(n) 4 12 6n −  48n-24 

D1(n) 4 12 6n −  48n-24 

D2(n) 4 12 6n −  48n-24 

       D3(n) 4 12 6n −  48n-24 

 

4. RELATED THEOREMS 
 

Theorem4.1:[9] A non empty connected graph is Eulerian if and only if it has no vertices of odd 

degree. 

 

Theorem4.2: [9] A graph is bipartite if and only if  it contains no odd cycle. 
 

Theorem4.3: DD(n) ,DDD(n) , and D3(n) are both  Euler and  bipartite Graphs.  

 

Proof: DD(n) ,DDD(n) , and D3(n) are graphs containing vertices of even degree and does not 

contain odd cycle , therefore by theorem 4.1 and 4.2  , DD(n) ,DDD(n) , and D3(n)  are Euler  

graphs  and bipartite graphs. □ 

 

Theorem4.4: DD(n), DDD(n) and D3(n)  are bichromatic. 

 

Proof: By theorem 4.3 , DD(n), DDD(n), D3(n) are bipartite graphs. The vertex  set of each graph 

can be decomposed in to two sets V1, V2 such that for any edge (x, y)  of G, x belongs to  V1, and 

y belongs to V2 is always true. Hence DD(n), DDD(n) and D3(n)  are bichromatic.□ 

 

4.5 OBSERVATIONS 
 
4.5.1  DD(n) and DDD(n) can be embedded into Silicate network  SL(n)  and  Dominating Silicate 

network  DSL(n) respectively with dilation one. 

 

4.5.2  HReM (2n,3n-1),  HRoMs(2n-1) , HCC(n) , and  HRrTM(3n-2),   can be embedded in to 

D1(n) with dilation  at most 2,where n is the dimension of  D1(n) and  n >1. 
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4.5.3:  HReM (2n , 3n-1), HRoMs(2n-1), HCC(n)  and  HRrTM(2n+1) can be embedded in to 

D2(n) with constant dilation  2, where n is the dimension of  D2(n) , and n  >1. 

 

4.5.4: KRrTM(3n-2) can be embedded in to D1(n)  with dilation one. 

 
4.5.5: DD(n) can be embedded in to  DDD(n) with dilation one. 

 

4.5.6: Oxide Network OX(n), Dominating Oxide network DOX(n) can be embedded in to DD(n), 

DDD(n) respectively with dilation 2. 

 

Oxide network OX(n) and Dominating Oxide network DOX(n) are defined as in [36, 10].  Now 

we shall find lower bound for the metric dimension of DD(n).  
 

Theorem4.6: The metric dimension of David Derived network DD(n) is at least 2n. 

 

Proof: 

 

             Figure 30(a)    DD(1)                            Figure 30 (b)    DD(2) 

 

For i = j , each pair of vertices (ai , bj)  are at equal distance from all other vertices of DD(n). And 

there are at least 2n pair of such vertices exist in DD(n) , either all ai  or bi must present in the 

basis. Hence the cardinality of basis must be greater than or equal to 2n. Hence the metric 

dimension of DD(n) is greater than or equal to 2n.  

 

5 CO ORDINATE SYSTEM FOR SD(n) 
 

A coordinate system is proposed that assigns an address to each vertex of SD(n)  as it was 

proposed for Oxide network in [36] , since SD(n) is a  proper sub graph of Oxide network 

OX(n+1) and  OX(n) is a proper sub graph of  SD(n+1). It is interesting to see that both are 

identical graph when  n = 1. The basic idea is due to Stojmenovic [7] and to Nocetti et al.[35] 

who proposed a system for a honeycomb network and a hexagonal network respectively. Three 

axes, α, β and γ parallel to three edge directions and at mutual angle of 120 degrees between any 

two of them are introduced. The three coordinate axes are α = 0, β = 0, and γ = 0 respectively. We 

call lines parallel to the coordinate axes as α-lines, β-lines and γ-lines.  

 

Here α = h and α = – k are α-lines on either side of α - axis.  A vertex of SD(n) is assigned a triple 

(a, b, c) when the vertex is the intersection of lines α = a, β = b, and  γ = c. See Figure 31. 
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                    Figure  31.  Coordinate System for Star of David Network of dimension 2. 

 

Since SD(n) is symmetrical about α ,β, and γ axes , A(6,3,-3) is the image of A’(-6,-3,3) ,  

B(-3,3,6) is the image B’(3,-3,-6) and C(-3,-6,-3) is the image of C’(3,6,3). 

 

5.2 DRAWING ALGORITHM FOR STAR OF DAVID NETWORK OF HIGHER 

DIMENSION 
 
Step -1: Draw a Star of David graph H , which is of dimension one (figure 2). 

Step-2: Divide each edge into 2n -1 edges by inserting 2n -2 vertices at each edge of  H. 

Step-3: Connect all vertices which lies in the same line having odd α values.  Repeat this for β, 

and γ lines also. 

Step-4: Insert a new vertex at each new edge crossing. 

This will be a Star of David network SD(n) of  dimension n.  

 

Theorem 5.1: The metric dimension of Star of David network SD(n) is 3. 

 

Proof: We will prove that {A, B, C} is a metric basis for SD(n)  (refer Figure 32).  

 

Let u(x1,y1,z1) and v(x2,y2,z2) be any two distinct vertices  of  G = SD(n). Suppose u and v lies in a 
same α line, then x1= x2 , and hence either d (u, A) ≠ d (v, A) or d (u, B) ≠ d (v, B)→ (1). 
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Similarly, if u and v lies in a same β or γ  lines , then equation  (1)  is true.   

Let T1(G) be the sub graph of G enclosed by the lines α = -(2n-1) , β= (2n-1) and γ = -(2n-1). 

And T2(G) be the sub graph of G enclosed by the lines α = (2n-1) , β= -(2n-1) and γ = (2n-1). 

 

Clearly G = T1(G) U T2(G) and  T1(G) ∩ T2(G)  is a sub graph of  Hexagonal network HX(2n). 
 

 

1=α

0=α

1−=α

2−=α

2=α

3−=α

3=α

3=β3−=γ

5α = −

4α = −

6α = −  

              

Figure 32 .Edges of  equilateral triangle  graph T1(G) is highlighted with red color. 

 

Case1: 
 If u and v belongs to T1(G) and x1= x2, then d (u, B) ≠ d (v, B) and  d (u, C) ≠ d (v, C)→ (2) 

If u and v belongs to T1(G) and y1= y2, then d (u, A) ≠ d (v, A) and  d (u, B) ≠ d (v, B)→ (3) 

If u and v belongs to T1(G) and z1= z2, then d (u, A) ≠ d (v, A) and  d (u, C) ≠ d (v, C)→ (4). 

Case 2:  

Similarly the equations (2), (3), and (4) are true in T2(G). 

Case 3:  

If u and v belongs to T1(G) ∩ T2(G), then the equations (2), (3), and (4) 
 are true. 

Case 4:  

If u belongs to T1(G) and v belongs to G - T1(G) then  d (u, A) ≠ d (v, A) if x1= x2  ,  

d (u, B) ≠ d (v, B) if y1= y2  and d (u, C) ≠ d (v, C) if z1= z2 . 

Case5: 
 u and v are vertices in T1(G) with x1 ≠ x2  ,   y1 ≠ y2  and z1 ≠ z2   if and only if    d(A, u) ≠ d(A, v). 

Proof:  If u and v are vertices in  T1(G) with x1 ≠ x2  ,   y1 ≠ y2  and z1 ≠ z2  ,  then there exist two 
equilateral triangles t1 (AEF ) sub graph and t2  (AHJ) sub graph as in figure 31,  if and only if  

d( u, A) ≠ d( v, A).  

Similarly we can prove case 6. 

Case 6:   
u and v are vertices in T2(G) with x1 ≠ x2  ,   y1 ≠ y2  and z1 ≠ z2   if and only if   

d(A’, u) ≠ d(A’, v).  

From Case 5 and 6, we get case 7. 

Case7:  
If  u(x1,y1,z1) and v(x2,y2,z2) are vertices in SD(n) then d (u, A) = d (v, A) if and only if  
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d (u, A’) = d (v, A’). 

 By the above results we get case 8. 

Case8:  
If u(x1,y1,z1) and v(x2,y2,z2)  are vertices in  T2(G) with x1 ≠ x2  ,   y1 ≠ y2  and z1 ≠ z2  , then   implies 

d (u, A’) ≠ d (v, A’) if and only if  d (u, A) ≠ d (v, A) . 
Other possibilities are ruled out by the symmetrical nature of SD(n). 

Thus the set { A , B, C}  is a Metric basis for SD(n). 

Hence the Metric dimension of SD(n) is  3. □ 

 

Note:{ A’ , B’, C’}  is  another Metric basis for SD(n). 

 

6. CONCLUSION AND FUTURE WORK 
 

In this paper, four  new Interconnection networks , David Derived Network DD(n) , Dominating 

David Derived Network DDD(n),  Honeycomb cup Network  HCC(n) and  Kite Regular 

Trianguline Mesh KRrTM(n) were introduced  and topological properties were studied. 

Embedding of poly Honeycomb networks, HCC(n), KRTM(n) in to D2(n) is shown for particular 

dimensions. Also We have investigated the metric dimension of SD(n) and  lower bound of the 

metric dimension for DD(n). There are many applications of the metric dimension to problems of 

network discovery and verification [38], pattern recognition, image processing and robot 

navigation [37], geometrical routing protocols [39], connected joins in graphs[40], and coin 
weighing problems[41]. The Metric dimension of Oxide, Dominating Oxide network, and 

Dominating David Derived network are under investigation.  
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