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Abstract

This study demonstrates the possibility of inverting hydrologic parameters using sur-
face flux and runoff observations in version 4 of the Community Land Model (CLM4).
Previous studies showed that surface flux and runoff calculations are sensitive to major
hydrologic parameters in CLM4 over different watersheds, and illustrated the neces-
sity and possibility of parameter calibration. Two inversion strategies, the deterministic
least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) Bayesian in-
version approaches, are evaluated by applying them to CLM4 at selected sites. The
unknowns to be estimated include surface and subsurface runoff generation param-
eters and vadose zone soil water parameters. We find that using model parameters
calibrated by the least-square fitting provides little improvements in the model simula-
tions but the sampling-based stochastic inversion approaches are consistent —as more
information comes in, the predictive intervals of the calibrated parameters become nar-
rower and the misfits between the calculated and observed responses decrease. In
general, parameters that are identified to be significant through sensitivity analyses
and statistical tests are better calibrated than those with weak or nonlinear impacts on
flux or runoff observations. Temporal resolution of observations has larger impacts on
the results of inverse modeling using heat flux data than runoff data. Soil and vegetation
cover have important impacts on parameter sensitivities, leading to different patterns
of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian
inversion approach effectively and reliably improves the simulation of CLM under differ-
ent climates and environmental conditions. Bayesian model averaging of the posterior
estimates with different reference acceptance probabilities can smooth the posterior
distribution and provide more reliable parameter estimates, but at the expense of wider
uncertainty bounds.
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1 Introduction

Inverse problems (or parameter calibrations/optimizations) involve a general framework
to derive from measurements information about a physical object or system (Taran-
tola, 2005). During the past decades, numerous inversion strategies, deterministic or
stochastic, have been developed and applied in earth systems sciences including at-
mospheric science, hydrology, geology, and geophysics. Three conditions (existence,
uniqueness, stability of the solutions) are necessary for a well-posed inverse problem
(Hadamard, 1902). However, as the conditions are usually violated in practice, some
regularization is generally needed to introduce mild assumptions on the solution and
prevent parametric over-fitting. It is also important for an inverse approach to be capa-
ble of quantifying and evaluating the prediction uncertainty.

For a given inverse problem, one can choose different approaches depending on the
requirements of parameter estimation accuracy, computational demand, and impor-
tance of prediction uncertainty (e.g. Hou et al., 2006; Chen et al., 2004; Hoversten et
al., 2006), which requires understanding of the advantages, disadvantages, and appli-
cability of each method. Deterministic approaches have been used to obtain ‘optimal’
parameter sets by evaluating the goodness of fit between observed and model simu-
lated response variables (e.g. Sorooshian, 1981; Sorooshian and Dracup, 1980; Duan
et al., 1992; Duan et al., 1993; Sorooshian et al., 1993; Hoversten et al., 2006). These
approaches generally assume that an optimal parameter set exists and implicitly ignore
the estimation of predictive uncertainties. However, a single optimal parameter set may
not exist and the uncertainties associated with the optimal parameter sets could be
large (e.g. Gupta et al., 1998; Klepper et al., 1991; Van Straten and Keesman, 1991;
Beven and Binley, 1992; Yapo et al., 1996). Moreover, a model with the optimal param-
eter set may provide the best fit over the calibration period, but multiple parameter sets
may result in comparable misfits and are likely to be the “true” values with certain prob-
ability, and therefore are considered to be acceptable or equally probable parameter
sets (Van Straten and Keesman, 1991; Klepper et al., 1991). Stochastic approaches
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can address these limitations by describing the input and output uncertainties in a
statistical manner. Generally, the input parameter space is represented in a form of
multivariate probability distributions of input parameters and must be sampled to gen-
erate multiple realizations of the model simulations so that the prediction range can be
estimated based on the ensemble model simulations (Beven and Binley, 1992; Freer et
al., 1996; Kuczera and Parent, 1998; Vrugt et al., 2003b). When multiple types of data
are available, multi-objective calibration can be used to deal with parameter estimation
uncertainty by combining several measures of performance for data fusion (Boyle et al.,
2000; Kollat et al., 2012; Gupta et al., 1998; Vrugt et al., 2003a). In practice, different
optimization methods can also be combined to improve the treatment of uncertainty in
hydrologic modeling (Vrugt and Robinson, 2007; Feyen et al., 2007; Vrugt et al., 2005).

In previous studies (Hou et al., 2012; Huang et al., 2013), we investigated the sen-
sitivity of surface fluxes and runoff simulations to major hydrologic parameters in ver-
sion 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic
exploratory sensitivity analysis framework at 13 flux towers from the Ameriflux net-
work and 20 watersheds from the Model Parameter Estimation Experiment (MOPEX)
(Huang et al., 2013) spanning a wide range of climate, landscape, and soil conditions.
We found that the CLM4 simulated latent heat flux (LH), sensible heat flux (SH), and
runoff show the largest sensitivity to subsurface runoff generation parameters. These
studies demonstrated the necessity and possibility of parameter inversion/calibration
using available measurements of surface fluxes and streamflow to invert the optimal
parameter set, and provided guidance on reduction of parameter set dimensionality
and parameter calibration framework design for CLM4.

This study aims to demonstrate the inversion methodology at selected sites based
on the global sensitivity analyses detailed in Hou et al. (2012) and Huang et al. (2013).
Among various inversion approaches, we adopt and compare the performances of two
different inversion strategies, including deterministic least-square fitting and a stochas-
tic Bayesian inversion approach integrated with Markov-Chain Monte-Carlo (MCMC)
sampling. The unknowns to be estimated include model parameters for surface and
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subsurface runoff generation and vadose zone soil water movement. Different options
for the inversion framework are evaluated at the selected sites. For example, it is impor-
tant to evaluate the prior incompatibility issues in an inversion design (Hou and Rubin,
2005). As detailed in the remaining sections of this paper, we evaluated the impacts of
prior information (e.g., initial guesses) on the inversion results. We also compared the
consistency and reliability of inversion using both monthly and daily flux observations,
and compared the performance of Bayesian model averaging to the individual inver-
sion approaches for parameter estimation. We also discuss the issues related to data
quality, data worth, and redundancy.

2 Site and data description

We perform parameter estimation at two flux tower sites and one MOPEX basin. The
MOPEX basin is in close proximity to one of the flux tower sites to investigate model
inversion using heat flux versus runoff data. These sites/basins are chosen based on
previous sensitivity analyses over a larger set of flux tower sites and MOPEX basins
(Hou et al., 2012; Huang et al., 2013) that demonstrated the feasibility and necessity of
parameter calibration at those locations and to provide representative and contrasting
climate and environmental conditions within the United States for more robust con-
clusions. US-ARM is located in Oklahoma and is covered by croplands (Allison et al.,
2005; Baer et al., 2002; Fischer et al., 2007; Riley et al., 2009; Suyker and Verma,
2009). US-MOz is located in Missouri and is covered by deciduous broadleaf (Gu et
al.,, 2012, 2006). Meteorological forcing, site information such as soil texture, vege-
tation cover, and satellite-derived phenology, as well as validation datasets, such as
water and energy fluxes, are provided by the North American Carbon Program (NACP)
site synthesis team. The site information is provided in Table 2 in (Hou et al., 2012).
MOPEX basin (07147800) is the Walnut River basin in Kansas with a drainage area
of 4869 km?, which is dominated by silty clay loam soil and covered by 6 % C3 grass,
22 % C4 grass, and 20 % croplands according to the MODIS based land cover map in
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(Ke et al., 2012). The meteorological forcing for the MOPEX basin was extracted from
the phase two North America Land Data Assimilation System (NLDAS2) forcing at an
hourly time step from 1979-2007 (Xia et al., 2012), including precipitation, shortwave
and longwave radiation, air temperature, humidity and wind speed at a 1/8th degree
resolution derived from the 32km resolution 3 hourly North American Regional Re-
analysis (NARR) following the algorithms detailed in Cosgrove et al. (2003). An area-
average algorithm was then applied to the NLDAS2 forcing as inputs to CLM by treating
the entire basin as a single computational unit. CLM was spun up by cycling the forcing
at each site for at least five times until all the state variables reached equilibrium before
any statistics were calibrated for inversion, based on the methodology described below.

3 Methodology
3.1 Parameterization

Observational data used in parameter estimation are observed latent heat fluxes and
runoff measurements, which are processed and gap-filled to obtain daily and monthly
averaged data. For unknowns, we focus on the parameters that are most identifiable
from the response variables (i.e. they have significant, straightforward, and distinguish-
able influences on hydrologic processes, including soil hydrology and runoff genera-
tion processes). The 10 hydrologic parameters that we found to have impacts on the
simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil
moisture in CLM4 are f,.y, Cs, fovers Tarai» Qam» Sy, b, W, Ks, and 6s. Explanations of
the 10 parameters and their prior information are shown in Table 1.

3.2 Parameter calibration using least-square fitting approaches

Different approaches can be used to calibrate the selected hydrologic parameters us-
ing available observations such as runoff and surface fluxes data. The method of least
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squares is a standard approach to approximate the solution of over-determined sys-
tems, i.e., systems specified by more equations than unknowns. One well-known ap-
proach utilizing the least-square fitting concept is PEST (Parameter ESTimation) (Do-
herty, 2008), which is a general-purpose, model-independent, parameter estimation
and model predictive uncertainty analysis package. Here we adopt PEST to perform
single-objective least-square fitting of the observational data, with the loss function de-
fined as the sum square of fitted residuals between calculated and observed runoff or
latent heat fluxes. However, simulations of heat flux and runoff using the calibrated pa-
rameters show only small improvements compared to simulations using the default pa-
rameter values. To further explore the usefulness of the least-square fitting approach,
the PEST-calibrated parameter estimates are used as one of the choices for initial
guesses of the parameters for stochastic Bayesian updating as explained below to
determine if such estimates may improve the convergence rate or robustness of the
inversion results.

3.3 Bayesian updating

In practice, it is critical to evaluate and quantify the uncertainty associated with pa-
rameter estimation; therefore, we should consider stochastic inversion/calibration ap-
proaches (e.g. Bayesian inference) and describe the input/output uncertainties in a
probabilistic manner. Bayesian inference derives the posterior probability as a conse-
quence of two antecedents: a prior probability given prior information, and a “likelihood
function” derived from a probability model for the data to be observed. Bayesian infer-
ence computes the posterior probability according to Bayes’ rule:

f(mld,l) o< (d|m,1)-f (m|l), (1)

where f (m|d,/) represents the posterior pdf of parameter m, f (d|m,/) denotes the
likelihood of observing d given parameter m, and f (m|l) is the prior pdf of m given
prior available information /.
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We assume that the forward models (e.g. CLM4) are being characterized by d,/ =
gij(m) +¢;;, where m represents the vector of model parameters, d;; = g;;() is the
forward model, ¢;; is the difference (i.e. residual) between the model d;; and obser-
vation d,?*j (i.e. residuals), i =1,...,K; j=1,...,N,, K being the number of data types
and N; being the number of observations for the /-th data type. With the underlying
assumptions that ¢;;¢;; are normally distributed with variance 6,-2/-, and the distributions
are independent, the likelihood function can be represented as (Hou et al., 2006):

K N; 1 1 . 2
fD|M,Z,/(d*|m,a,/) = I_l,-=1 |_|/.= ] \/2_710/1 exp _;,-2,- [d,. =9 j(m)] . 2

The posterior distributions of the input parameters are the products of the priors and
the likelihood functions. As more information comes in, Bayes’ rule can be applied
iteratively, that is, after observing some evidence, the resulting posterior probability
can be treated as a prior probability, and a new posterior probability is computed from
the new evidence.

3.4 Sampling methods

An efficient sampling approach is important for the success of Bayesian inversion,
especially when the forward modeling computational demand is high, the parameter
dimensionality is high, or the parameters are weakly identifiable. In this study, the
Metropolis-Hasting sampling method is used to draw samples from the joint posterior
distribution functions. The procedure is as follows:

(a) initialize a random vector m from the prior distributions {mﬁo),/ =1,...,n};

(b) generate a random variable m;f,i =1,...,n from the proposal distributions, and
calculate the following ratio (note the probabilities in the formula are calculated
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using Eq. 2):
(1 1 1 0 0 ()
_ prob(m.|m( ) m(z),...,mf. )1, f.+)1, f.+)2,...,m§,))
a=mn| Pra O 0 0 00 CNIE ®)
prob(m |m my’,...,m;_ 1,ml.+1,m,.+2,...,mp)

(c) generate a random value v uniformly from interval (0,1);

(d) ifa > u, let mf.” = m;f; otherwise, let mf.” = mf.o).
Repeating steps (b) to (d) by replacing index (k) with index (k + 1), we can obtain many
samples as follows: {(m(k)) i=1,...,n, k= 0,1,...,q}. From the procedure, we can

see that the value m( ) only depends on the current state of m, but not the previous
states; therefore, these samples form a Markov Chain.

3.5 Inversion setup
3.5.1 Choices of initial values (default, mean, PEST estimates)

Initial values have little impact on precision and accuracy of a robust optimization algo-
rithm, but affect the convergence speed. In order to increase the efficiency of inverse
modeling, we compared choices of initial values including the default parameter values
in CLM4, the mean values between the prior bounds, as well as the PEST estimates
calibrated using observational data at each study site. The default and mean values
are based on prior information in Table 1. Tests show that the convergence speed of
the MCMC-Bayesian calibration is not affected by the choices of initial values, although
the PEST estimates reduce the discrepancies between calculated and observed re-
sponses compared to using the default parameter values for CLM4 model calculations.
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3.5.2 Choices of proposal distribution widths (automatic versus multi-chain
comparison)

The convergence speed (i.e. the number of steps needed to obtain consistent poste-
rior statistics of the unknown parameters) and accuracy of parameter estimation are
associated with several tuning parameters of the inversion setup. Proposal distribution
width, an important tuning parameter of the MCMC algorithm, controls the searching
precision and speed. We compared different widths, i.e., 1/2, 1/4, 1/8, and 1/16, rela-
tive to the prior bounds of the unknown parameters. The widths correspond to the 99 %
confidence interval of Gaussian proposal distributions. Optimized convergence speed
and stable results can be achieved with a proposal width of 1/8 relative to the prior
bounds. To compare the performances of different tuning parameters, and to reduce
the time of convergence, we take advantage of high performance computing resources
to conduct multi-chain calibrations simultaneously.

3.5.3 Reference acceptance probability

In this study, we also evaluated the effects of using different acceptance probabilities
for newly generated parameter samples in the MCMC process. We named the criterion
as reference acceptance probability, a trade-off between convergence speed and accu-
racy of parameter estimates. If the acceptance probability of new sample sets is greater
than the product of reference acceptance probability and the acceptance probability of
prior sample, we accept the new sample. Specifically, four reference acceptance prob-
abilities, i.e., 1.0, 0.95, 0.9, 0.5, are adopted to set the multi-model for inverse modeling
of CLM. Probabilistic model averaging can then be used to integrate the different sets
of parameter predictions by weighting the posteriors according to the posterior model
probability.
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3.6 Sensitivity to data frequency, observation type, and site conditions

Daily and monthly data (runoff and heat flux) are both used in parameter calibration,
and the performances are compared to study the impact of data temporal resolution on
parameter inference. Compared to monthly data, daily data include higher-frequency
characteristics of temporal variations in the observations; however, adjacent obser-
vations tend to have more information redundancy and data quality is an issue. A
stochastic inversion approach usually provides parameter calibrations with lower un-
certainty (more “precise”) as more and more data are used, but measurement errors
could lead to overfitting of errors and therefore biased estimates. Through comparison,
we can identify the most appropriate observing time scale for calibration to improve
CLM4 simulations.

Different model responses associated with different components of CLM have differ-
ent sensitivities to the unknown parameters. We conduct a MCMC-Bayesian inversion
at the US-ARM site and one MOPEX basin (07147800), which are located in close
proximity with similar climate and land surface conditions. By comparing the inversion
results using observed heat flux and runoff, we can evaluate the impacts of using dif-
ferent types of observations on parameter inference in CLM.

Calibrations are also done at flux tower sites (US-ARM vs. US-MQz) with different soil
and vegetation conditions to study the impacts of land surface conditions on parameter
inference of CLM. Soil, climate, and vegetation control water and energy fluxes, such
as infiltration, evaporation, and surface radiation; they can affect the overall parameter
identifiability and inversion results.
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4 Results of full-set parameter inversion
4.1 Parameter inversion at flux tower sites using heat flux observations

4.1.1 Posterior distributions of input parameters and simulated heat flux from
use of monthly data

Using monthly heat flux data during 2003—2006 at the US-ARM site, we conducted
inversion of ten CLM parameters with four reference acceptance probabilities. Figure
1 shows the prior and posterior distributions of the parameters, where the prior distri-
butions are derived from prior information, and the posterior distributions are derived
based on the last 200 samples of inverse modeling. Note that three parameters Q,,
Y, and K, vary by several orders of magnitude, and are log,-transformed. Poste-
rior distributions with different reference acceptance probabilities generally are consis-
tent, except for £y, Qgm and S, when the rejection rate is very low with a reference
acceptance probability p,, of 0.5. As shown in Eq. (3), a low reference acceptance
probability p,, means that the rejection standard and searching ranges are relaxed.
As more potential estimates are identified and accepted, the bounds of posterior dis-
tributions increase, and multi-modal behaviors occur, especially for 8. The posterior
means/modes of the estimated parameters shifted farther or less away from the prior
means, particularly for f,,, and ;.

Figure 2 shows the simulated monthly mean heat fluxes using posterior estimates of
parameters with four reference acceptance probabilities using monthly observations at
the US-ARM site. The black line shows the monthly mean heat fluxes obtained from ob-
servations during 2003—2006, and the red line shows the calculated monthly mean heat
fluxes using default parameters based on prior information. Simulations using default
parameter values overestimate the heat fluxes in summer (from May to September),
and underestimate in winter at the US-ARM site. When the reference probabilities are
1.0, 0.95, and 0.9, the posterior estimates of parameters all significantly improve the
heat flux simulation in summer, and the posterior model probabilities (i.e., the product
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of Gaussian probabilities of misfits between calculated and observed responses) are
0.730, 0.730, and 0.728 respectively, which are greater than 0.636 for the default pa-
rameter values. However the estimates with reference acceptance probability of 0.5
noticeably deviate from other inversion estimates, and tend to result in underestimates
of simulated heat fluxes in summer. However, none of the parameter estimates is able
to yield much better fits during winter, which might be due to errors in the observed heat
fluxes, errors in the CLM forcing data, and/or under-representation of the complicated
physical processes using the current parameterization schemes.

Similarly, inversion was also performed using monthly heat flux data during 2004—
2007 at the US-MOz site with different soil and vegetation cover from US-ARM site.
Figure 3 shows the posterior distributions of ten parameters with four reference accep-
tance probabilities. They show consistent patterns for different reference acceptance
probabilities, except for the parameter b. Even when the reference acceptance proba-
bility is 0.5, the inversion yields reasonable parameter estimates for most parameters
except for b and W. The relaxed rejection standard also leads to multi-modal, extended
posterior distribution bounds, and more potential parameter estimates. It is noted that
the posterior distribution of 7,4, Cs, fq4ri» £, and W are around the median values of
the prior bounds.

Figure 4 shows the calculated monthly mean heat fluxes using the posterior parame-
ter estimates from monthly observation at the US-MOz site. It is obvious that the default
simulation underestimates the heat flux over all seasons. From January to June, all
posterior estimates with different reference acceptance probabilities can significantly
improve the simulation of heat flux, except for some small underestimations in April,
May, and June. From July to December, the posterior estimates with reference accep-
tance probabilities of 1.0 and 0.5 are similar and close to observation, while the other
two overestimate the heat flux a little in July and August. As a whole, all estimates of
the inverse modeling can improve the simulation of heat flux over all seasons, and the
posterior model probabilities are 0.893, 0.889, 0.886, and 0.892 respectively, which are
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greater than 0.876 of the default simulation. Differences in the posterior distributions
with different reference acceptance probabilities are small.

4.1.2 Posterior distributions of input parameters and simulated heat flux from
use of daily data

Figure 5 shows the posterior distribution of model parameters with four reference ac-
ceptance probabilities using daily heat flux data during 2003—-2006 at the US-ARM site.
The posterior distributions disperse over the prior bounds for most parameters. Among
the four sets of posterior distributions, reference acceptance probability of 1.0 and 0.95
identify similar bounds, while the other two sets yield different results, particularly for
fraxs foverr @am» @nd K. Moreover, multi-modal distributions occur for most parameters
when the rejection standard is relaxed.

Figure 6 shows the calculated monthly mean heat fluxes using the posterior esti-
mates of parameters from daily observations at the US-ARM site. The posterior es-
timates of parameters also improve the heat flux in summer. The acceptance proba-
bilities of the simulations with four parameter sets are 0.636, 0.618, 0.584, and 0.593
respectively, which are all greater than 0.579 of the default simulation.

The posterior distributions of the parameters with the four reference acceptance
probabilities using daily heat flux data during 2004-2007 at the US-MOz site show
that the posterior distributions are more consistent for C, o6, Qgms Sy, and ¥, but
dispersed for b, K5 and 5. When the rejection standard is relaxed, the posterior bounds
can become much wider, especially for fy.,;, Qqm, b, K5 and 8. In winter, all simula-
tions of heat flux using the posterior estimates are close to observations. In summer,
posterior estimates with reference acceptance probabilities of 1.0 and 0.95 significantly
improve the flux heat simulation.
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4.2 Parameter inversion at MOPEX sites using runoff observations

Runoff observations are also used in the inverse modeling of CLM. Figure 7 shows the
posterior distribution of the parameters with four reference acceptance probabilities
using monthly runoff data during 2002—-2005 at the MOPEX basin close to US-ARM.
Posterior distributions with strict reference acceptance probabilities (e.g. 1.0, 0.95 and
0.9) have consistent patterns for most parameters, except for b, K, and 6;. It is in-
teresting to see that f,,,, is identically estimated by inversions with different reference
acceptance probabilities. When the rejection standards are relaxed, the bounds of pos-
terior distributions of most parameters become wider, and multi-modal patterns occur.

Figure 8 shows the calculated monthly mean runoff using the posterior estimates
of parameters from monthly observations at the MOPEX basin. The default simulation
barely shows any variability of runoff. The posterior estimates significantly improve the
runoff simulations in all seasons, albeit larger variability than observations is noted from
July to October. The acceptance probabilities are 0.846, 0.767, 0.758, and 0.737, all
greater than 0.707 of the default runoff simulation. Among the four sets of simulations
based on inversion, more stringent sample rejection criterion results in a better match
between the simulated responses with observations.

For comparison with inversion using monthly runoff data, we also perform inversion
using daily runoff data during 2002-2005 at the MOPEX basin. The posterior distribu-
tions with different reference acceptance probabilities disperse over the prior bounds,
except for S,. The calculated monthly mean runoff values using the posterior estimates
of parameters from daily observation are reasonable. Posterior estimates with refer-
ence acceptance probabilities of 1.0 and 0.95 can significantly improve the runoff sim-
ulation over all seasons, but underestimate the runoff in summer, and overestimate the
runoff in winter.
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5 Results of subset parameter inversion

Our global sensitivity analyses across 13 flux towers and 20 MOPEX basins, sug-
gest that simulated LH and runoff are most sensitive to three subsurface parameters.
Because the other parameters are less identifiable, the inverse problem will be less
ill-posed by fixing the trivial parameters. In this section, we test the feasibility of only
inverting a subset of identifiable parameters to determine if similar or improved model
skill may be achieved compared to using the full-set parameter inversion results. We
first conducted the inversion with a reduced set of parameters using monthly observa-
tion at the two flux tower sites and the MOPEX basin.

Figure 9 shows the posterior distribution of the reduced set of parameters at the US-
MOz site. Compared with the results of ten parameters (see Figure 3), the medians of
the posterior distribution of 74, and Qq,,, are smaller, the width of the posterior bounds
of f4s @nd S, is unchanged, while that of Q4 expands.

Figure 10 shows the calculated monthly mean heat flux using posterior estimates
of parameters at the US-MOz site. The simulations using posterior estimates of the
reduced parameter set significantly improve the heat flux simulation over all seasons,
and are similar to the results of inversion with ten parameters.

Inversion at the US-ARM site also show that in general, the posterior bounds start to
narrow, and the multi-modal patterns disappear, compared to the inversion results with
the full-set of parameters. Using posterior estimates of the reduced parameter set can
significantly improve the latent heat flux simulations compared to the results using the
full-set of parameters, especially from October to December, and from January to May.

Figure 11 shows the posterior distribution of the reduced parameters at the MOPEX
basin. Compared with the results of ten parameters (see Fig. 7), the medians of poste-
rior distribution of 7y, and Qg are smaller, while that of S, does not change, and the
widths of posterior distribution of all parameters stay the same.

Figure 12 shows the calculated monthly mean runoff using posterior estimates of pa-
rameters at the MOPEX basin. Inversion with reduced parameters improves the runoff
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simulation, which is similar to the posterior simulation with ten parameters, while the
simulation with the default parameter is far away from observation.

Overall, inverse modeling with a reduced set of parameters identified from previous
sensitivity analysis shows some small improvements in simulating heat flux compared
to using the posterior results with ten parameters, and since the inverse problems be-
come less ill-posed with fewer unknowns, the convergence of inverse modeling is faster
and the resulting posteriors are more consistent without multi-modal patterns. However,
the simulations of heat flux at the US-MOz and runoff at the MOPEX basin are com-
parable between the inversion for the reduced and full set of parameters. Theoretically,
one may expect improvement using the reduced parameter set because the inversion
become less ill-posed, but in practice, getting a faster convergence of the solution may
be the main advantage, which is important especially when calibrating parameters for
computationally intensive models.

6 Discussion
6.1 Impacts of temporal resolution of heat flux observation on inverse modeling

Both monthly and daily heat flux data have been used in the inverse modeling at se-
lected flux tower sites. Using monthly observation data, inversion with reference accep-
tance probabilities (except for p,, of 0.5 at US-ARM) is able to identify proper parameter
estimates to improve heat flux simulation. Using daily observation data, inversion im-
proves the heat flux simulation only with reference acceptance probabilities of 1.0 and
0.95, suggesting that increasing data frequency requires a more stringent acceptance
criterion. Comparing Figures 1 and 5, inversion using daily instead of monthly obser-
vations favors values of f, ., Qqn, ¥ towards the lower bounds but 84 is opposite at
the US-ARM site. At the US-MOz site, inversion using daily observation also favors
values of £, Q4m towards the lower bounds but K is opposite. Hence, finer temporal
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resolution of observation data all favors smaller £, and Qq,,. For specific site, it may
also lead to changes of other parameters.

Regarding inversion using runoff data, we also found that finer temporal resolution
of runoff observations leads to more dispersion of the posterior distributions of most
parameters, except for £, S, and 65. Using monthly observation data, inversions
with all reference acceptance probabilities are able to improve monthly mean runoff
simulation over all seasons. However using daily observation data, inversion improves
runoff simulation only with reference acceptance probabilities of 1.0 and 0.95.

Overall, finer temporal resolution of observation data leads to more dispersion of the
posterior distributions and increases the risk of using relaxed rejection standard. These
are likely related to increased measurement errors, data redundancy, and over-fitting
with higher temporal frequency observations.

6.2 Impacts of soil and vegetation cover on inverse modeling

Compared to US-MOz, inverse modeling at the US-ARM site identifies smaller Qy,,
and greater £, 6. In addition, the bounds of posterior distribution identified by the
inversion show more consistency across different reference acceptance probabilities
for fovers Tyrai» Qam» b, and W at US-ARM than US-MOz, especially with monthly heat
flux data. At US-MOz, the bounds of posterior distribution are mainly consistent for f,,,,
Tovers @ams Sy, and 6. These inversion results are consistent with the sensitivity analysis
performed by Hou et al. (2012), which shows larger sensitivity to the respective param-
eters at the two sites related to the soil and vegetation properties. The best estimated
parameters are different at sites with different climate, land use, and soil conditions;
hence soil and vegetation cover may inform the selection of sensitive parameters that
can be used in reduced parameter sets for inverse modeling. It is therefore neces-
sary to analyze parameter sensitivity and identifiability across the MOPEX basins and
classify them into different groups/classes with similar climate and soil conditions, and
then evaluate parameter transferability within each class or between classes through
inverse modeling study.
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6.3 Impacts of reference acceptance probability

In this study, we set the reference acceptance probability in the inverse modeling to
relax rejection standard to allow more freedom in searching for optimal parameter es-
timates. However, relaxing the rejection standard leads to broadening of the bounds of
posterior distribution and multi-modal behaviors. That is, the posterior estimates tend to
be more “accurate” but less “precise”, and the corresponding inversion process usually
take longer to converge.

6.4 Impacts of different types of observations on inverse modeling

Inverse modeling using heat flux at US-ARM and runoff at the MOPEX basin, which
is located close to US-ARM, provides an opportunity to assess the impacts of data
type on inverse modeling. Comparing Fig. 1 and Fig. 7, the posterior distributions that
optimize the simulations of heat flux can differ from those that optimize the simulations
of runoff. Since the calibrated model parameters are directly related to soil hydrological
processes including surface and subsurface runoff, it is not surprising that model in-
version leads to more significant improvements in runoff (Fig. 8) than heat flux (Fig. 2)
compared to simulations that use the default parameter values. The simulations of heat
flux can nevertheless be improved by inverting hydrologic parameters because surface
heat flux is influenced by soil moisture, which is closely related to runoff processes. The
improvement in simulations of heat flux is particularly noticeable for US-MOz, where
the surface energy budget is more strongly influenced by soil moisture in a forested
site compared to US-ARM, which is a cropland site.

Although inversion modeling leads to larger improvements in the runoff simulations
compared to the simulations using the default parameter values, the runoff simulations
with the posterior estimates still deviate quite significantly from the observed runoff in
late summer and fall. This suggests that some model biases in runoff may require struc-
tural changes in the hydrologic parameterizations combined with parameter calibration
to improve model skill.
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6.5 Improvements through Bayesian model averaging

For each reference acceptance probability for the MCMC-Bayesian inversion, one can
obtain a set of posterior distributions of the unknowns. Bayesian model averaging is
used to integrate the different sets of predictions by weighting the posteriors according
to their posterior model probability.

By integrating inversion results of different reference acceptance probabilities,
Bayesian model averaging produces smoother posterior distributions. Figure 13 shows
the posterior distributions of the parameters through Bayesian model averaging at the
US-ARM site. The black lines represent the prior distributions based on prior informa-
tion. The red and blue curves represent the posterior distributions of the parameters
using monthly and daily heat flux observations, respectively. These two sets of poste-
rior distributions are similar to each other for most parameters, except for 7, . Daily
heat flux favors smaller C, fyyer, Qum, W, and greater 7., Ks, 8. The posterior distri-
butions using monthly and daily observations at the US-MOz site are also similar, but
daily heat flux favors smaller Cs, fyyers fyrai» Qams Sy W, 65, @and greater fo,,, K.

Figure 14 shows the posterior distribution of the parameters through Bayesian model
averaging at the MOPEX basin. The posterior distributions using monthly and daily
runoff observation are also similar. Daily observation favors smaller 5 and greater S, ,
b, K. It is noted that the differences between the posterior distributions from monthly
and daily data are even smaller from inversion using runoff compared to inversion using
heat flux, especially for £, Qg This may be related to the characteristic time scales
of the physical processes. Surface heat flux may have less day-to-day variability (hence
larger data redundancy) compared to runoff, which responds more directly to precipita-
tion that has larger temporal variability during the wet season. These differences could
be site and season dependent so analyses over a larger number of sites can provide
further insights on the sensitivity of model inversion to data temporal frequency.
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Model integration represents a compromise of all possibilities of the inversion setup.
In general, it results in “safer” (i.e. more likely to be unbiased) estimates but lower
resolution (i.e. wider posterior distributions).

6.6 Model validation

In the above analyses, we compared observed and model calibrated responses to
check whether smaller misfits can be achieved through the calibration process, and
to evaluate the different calibration power using runoff versus heat flux observations,
monthly versus daily data, and different tuning parameters. In an inverse study, it is
important to validate the inversion approach. It is straightforward to validate the results
when true values of the unknown input parameters are available. Otherwise, people
may design “synthetic” models by assuming the “true” parameter values are available,
then “generate” the corresponding “true” responses, which are then used for testing
the inversion approach. An alternative way of validation is to separate the dataset to
training (for calibrating the parameters) and testing periods, assuming the parameters
are intrinsic to the system and not time-varying. Figure 15a and b show the obser-
vations as well as model simulated monthly and daily runoff calculated using default
and optimal parameter values. The inversion (training) time period is 2002—2005, and
validation periods are 2000—2001 and 2006—2008. The root-mean-square-errors (RM-
SEs) are calculated for the validation periods only. We found that RMSEs are reduced
more for monthly data than for daily data. In general, runoff calculations using optimal
parameters from the training period can significantly improve the model misfits during
the testing periods, and the major patterns of inter-annual and seasonal variability are
well captured.
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7 Conclusions

In this study, we demonstrated the possibility of inverting hydrologic parameters using
surface flux and runoff observations in CLM4. Calibrating model parameters using the
deterministic least—square fitting method provides little improvement in simulating heat
flux and runoff, but using the calibrated values as initial guesses in the MCMC-Bayesian
calibration reduces the discrepancies between simulated and observed responses, but
the convergence rate is unaffected by the choice of initial guesses.

Focusing on the MCMC-Bayesian inversion method, we conducted inverse model-
ing at two flux tower sites and one MOPEX basin. We also discussed the impacts
of relaxing the rejection standard, data temporal resolution, data types, and soil and
vegetation on parameter inference. Informed by our previous sensitivity analysis, we
also performed inversion with reduced parameter dimensionality. Moreover, Bayesian
model averaging is adopted to integrate the posterior estimates with different reference
acceptance probabilities. The major conclusions are as follows.

1. Inversion results at the flux tower and MOPEX sites using monthly and daily sur-
face flux and runoff observations show that the MCMC-Bayesian inversion ap-
proach effectively and reliably improves the simulation of CLM under different cli-
mates and environmental conditions.

2. Temporal resolution of observations has clear impacts on the results of inverse
modeling using heat flux data, but the impacts are smaller using runoff data. Due
to data redundancy and quality, finer temporal resolution of observations may
yield biased estimates and multi-modal posterior distributions.

3. Significant improvements can be achieved to better match the simulated and ob-
served heat flux and runoff by using the estimated parameters compared to us-
ing the default parameter values. The improvement is more significant for runoff
than heat flux because the calibrated parameters are more directly related to
runoff processes. However, improvements in heat flux can also be quite significant
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especially in areas (e.g. forest) where the constraints between energy and water
are stronger. Soil and vegetation cover have important impacts on parameter sen-
sitivities, leading to the different patterns of posterior distributions of parameters
at different sites.

4. Reducing the parameter set can make the inverse problem less ill-posed. Numer-
ically, it also speeds up the convergence. In this study, inverse modeling with the
reduced parameter set favors parameter estimates closer to the lower bounds
than using the full set of parameters.

5. Bayesian model averaging that integrates the posterior estimates with different
reference acceptance probabilities, can smooth the posterior distribution and pro-
vide more reliable parameter estimates, but at the expense of wider uncertainty
bounds.

Overall, the MCMC-Bayesian inversion approach is found to provide effective and re-
liable estimates of model parameters at the site and watershed level to improve CLM
simulations of surface flux and runoff. To apply the method for inversion over a region
or globally, there are a number of challenges, including computational requirements
and availability and quality of observation data. The analyses presented in this study
should be extended to a larger number of sites with a wider range of climate, hydro-
logic, and vegetation/soil conditions to determine if and how model parameters may be
transferrable based on site conditions to larger areas or river basins. Exploring model
inversion at the river basin level rather than site level using combinations of local flux
measurements, area averaged flux data (e.g. derived from satellite), and basin total
runoff, each with their own uncertainty estimates, may provide an alternative strategy
for calibrating model parameter values for each river basin. To reduce the computa-
tional demand, we will also test the performance of the MCMC-Bayesian inversion
approach using surrogates (i.e. approximated relationships between inputs and output
responses) as alternatives to the CLM4 numerical simulator.
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Table 1. Selected hydrologic parameters in CLM4 and their prior information (from Hou et al.,

2012).
Index Symbol Definition Relevant Prior information
process
1 fnax Max fractional saturated Surface Mean value taken from the default CLM4 input dataset;
area, from DEM runoff STD =0.160; upper and lower bounds (0.01-0.907) deter-
mined from the default global datasetfor CLM4.
2 Cs Shape parameter of the to-  Surface Mean = 0.5 for flux towers, no std information, upper and
pographic index distribution  runoff lower bound 0.01 and 0.9.
3 fover Decay factor (m~') thatre-  Surface Hard coded to be 0.5 in CLM4.
presents the distribution runoff Mean = 0.5; upper and lower bounds: 0.1-5.
of surface runoff with
depth
4 forai Decay factor (m'1) that Subsurface Mean = 2.5; upper and lower bounds: 0.1-5.
represents the distribution runoff.
of subsurface runoff with
depth
5 Qaraimax Max subsurface drainage Subsurface Hard coded to be 5.5 x 103 kgm™s~" but typically should
am) (kg m=2s™) runoff vary between 1 x 10%t01x1072in hydrologic applications.
Tuning range is 1 x 10%t01x107" as suggested by NCAR.
6 S, Average specific yield groundwater Hard coded to be 0.2. Based on the dominant soil type of
dynamics  the site. Converted to coarser soil texture classes using the
USGS soil texture triangle. Mean = 0.02 for clay, 0.07 for
sandy clay, 0.18 for silt, 0.27 for coarse sand; bounds are
+50 % of the mean for the given soil texture.
7 b Clapp and Hornberger Soil water  Based on the dominant soil type of the site. Used equations
exponent from. Mean values and STDs are from Table 5 in Cosby et
8 Y Saturated soil matrix Soil water  al. (1984), except for STD of W, which is from Table 4 in
potential (mm) Cosby et al. (1984).
9 Ks Hydraulic conductivity Soil water
(mms™"
10 2 porosity Soil water

" Reproduced with permission from American Geophysical Union.
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Fig. 1. Posterior distribution of the parameters with four different reference acceptance proba-
bilities (p,,) using monthly heat flux data at the US-ARM site.
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Fig. 2. Simulated heat fluxes using the posterior estimates of parameters at the US-ARM site.
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Fig. 4. Simulated heat fluxes using the posterior estimates of parameters at the US-MOz site.
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Fig. 10. Simulated heat fluxes using the posterior estimates of parameters at the US-MOz site.
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Fig. 11. Posterior distribution of the reduced parameter set from previous sensitivity analysis at
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Fig. 12. Simulated runoff using the posterior estimates of parameters at the MOPEX basin.
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Fig. 13. Posterior distribution of the parameters through Bayesian model averaging at the US-
ARM site.
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Fig. 14. Posterior distribution of the parameters through Bayesian model averaging at the

MOPEX basin.
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Fig. 15. Comparison among the observations, default and optimal simulations of (A) monthly
and (B) daily runoff, during the inversion (2002—2005) and validation (2000—-2001 and 2006—
2008) periods at the MOPEX basin. The RMSEs are calculated for the validation periods.
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