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ABSTRACT:

In this paper we evaluated deep-learning frameworks based on Convolutional Neural Networks for the accurate classification of multi-
spectral remote sensing data. Certain state-of-the-art models have been tested on the publicly available SAT-4 and SAT-6 high resolution
satellite multispectral datasets. In particular, the performed benchmark included the AlexNet, AlexNet-small and VGG models which
had been trained and applied to both datasets exploiting all the available spectral information. Deep Belief Networks, Autoencoders
and other semi-supervised frameworks have been, also, compared. The high level features that were calculated from the tested models
managed to classify the different land cover classes with significantly high accuracy rates i.e., above 99.9%. The experimental results
demonstrate the great potentials of advanced deep-learning frameworks for the supervised classification of high resolution multispectral
remote sensing data.

1. INTRODUCTION

The detection and recognition of different objects and land cover
classes from satellite imagery is a well studied problem in the
remote sensing community. The numerous national and commer-
cial earth observation programs continuously provide data with
different spatial, spectral and temporal characteristics. In order
to operationally exploit these massive streams of imagery, ad-
vanced processing, mining and recognition tools are required.
These tools should be able to timely extract valuable informa-
tion regarding the various terrain objects and land cover, land use
status.

How automated and how accurate these recognition tools are, is
the critical aspect for their applicability and operational use. Re-
garding automation, although unsupervised and semi-supervised
approaches possess a native advantage, when comes to big data
from space with important spatial, spectral and temporal vari-
ability, efficient generic tools may be based on supervised ap-
proaches which have been trained to handle and classify such
datasets [Karantzalos et al., 2015, Cavallaro et al., 2015].

Among supervised classification approaches, Support Vector Ma-
chines (SVM) [Vapnik, 1998] and Random Forests [Breiman,
2001] have been broadly used for remote sensing applications
[Camps-Valls and Bruzzone, 2009, Tokarczyk et al., 2015]. Un-
der supervised frameworks every training dataset must be ade-
quately exploited in order to describe compactly and adequately
each class. To this end, training datasets may consist of a com-
bination of spectral bands, morphological filters [Lefevre et al.,
2007], texture [Volpi et al., 2013], point descriptors [Wang et al.,
2013], gradient orientation [Benedek et al., 2012], etc.
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Figure 1: Certain state-of-the-art models have been tested on the
publicly available SAT-4 and SAT-6 high resolution satellite mul-
tispectral datasets. All the models have been designed and trained
based on the DeepSat dataset.

Recently, deep learning architectures have gained attention in
computer vision and remote sensing by delivering state-of-the-art
results on image classification [Sermanet et al., 2013], [Krizhev-
sky et al., 2012], object detection [LeCun et al., 2004] and speech
recognition [Xue et al., 2014]. Several deep architectures [Deng,
2014, Schmidhuber, 2015] have been employed, with the Deep
Belief Networks, Autoencoders, Convolutional Neural Networks
and Deep Boltzmann Machines being some of the most com-
monly used in the literature for a variety of problems. In partic-
ular, for the classification of remote sensing data certain deep ar-
chitectures have provided highly accurate results [Mnih and Hin-
ton, 2010, Chen et al., 2014, Vakalopoulou et al., 2015, Basu et
al., 2015, Makantasis et al., 2015, Marmanis et al., 2016].

Deep architectures require a significant amount of training data,
while labelled remote sensing data are not broadly available. Re-
cently, a new publicly available dataset with a large number of
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training data was released [Basu et al., 2015]. DeepSat con-
tains patches extracted from the National Agriculture Imagery
Program (NAIP) dataset with about 330,000 scenes spanning the
entire Continental United States and approximately 65 terabytes
of size. The images consist of 4 bands: red, green, blue and Near
Infrared (NIR) and were acquired at a ground sample distance
(GSD) of 1 meter, having horizontal accuracy up to 6 meters.
The dataset is composed of two discrete units, each of them hav-
ing two different group of patches: one for training and one for
testing. SAT-4 is the first unit and it has four different classes
which are: barren land, trees, grassland and a class that consists
of all land cover classes other than the above three. It contains
400.000 training and 100.000 testing patches. The second unit,
SAT-6, contains six different classes: barren land, trees, grass-
land, roads, buildings and water bodies. It contains 324.000 train-
ing and 81.000 testing patches. The large number of labelled data
that DeepSat provides, makes it ideal for benchmarking different
deep architectures.

In this paper, motivated by the recent advances on deep convolu-
tional neural networks, we benchmark the performance of certain
models for classifying multispectral remote sensing data (Fig-
ure 1). Based on the DeepSat dataset, we have trained different
models and reported on their performances. In particular, Alex-
Net, AlexNet-small and VGG models have been implemented and
trained on the DeepSat dataset [Krizhevsky et al., 2012, Jader-
berg et al., 2015, Ioffe and Szegedy, 2015, Vakalopoulou et al.,
2015]. The high accuracy rates demonstrate the potentials of
advanced deep-learning frameworks for the supervised classifi-
cation of high resolution multispectral remote sensing imagery.
Comparing with Deep Belief Networks, Autoencoders and Semi-
supervised frameworks [Basu et al., 2015] the proposed here Alex-
Net and VGG deep architectures outperform the state-of-the-art
delivering classification accuracy rates above 99.9%.

The remainder of the paper is organized as follows. In Section 2.,
we briefly describe different deep learning models while in Sec-
tion 3. we present and discuss their results. The last section pro-
vides a short summary of the contributions and examines poten-
tial future directions.

2. DEEP-LEARNING FRAMEWORKS

In this section all the tested models and their parameters are pre-
sented. Both training and testing datasets had been normalised
before inserted into the networks. The implementation of all
compared deep learning frameworks was performed in the open
source Torch deep learning library [Collobert et al., 2011], while
the specific implementation is available in authors’ GitHub ac-
counts.

2.1 AlexNet-Pretrained Network

Similar to [Vakalopoulou et al., 2015, Marmanis et al., 2016] the
already pretrained AlexNet network [Krizhevsky et al., 2012] has
been employed, here, for feature extraction. In particular, features
from the last layer (FC7) were extracted using two spectral band
combinations (red-green-blue and NIR-red-green). In this way, a
vector with high level features of size 2x4096 has been created
for each patch. Using the training dataset an SVM classifier has
been trained (Figure 2) and then the produced model was used for
the classification of the testing patches.

The main drawback of this specific setup is the high dimensional-
ity of the employed feature vector (i.e., 2 x 4096) as the pretrained
model can not handle more than three spectral bands per patch.

Patches

+ ...

+ ...

+ ...

+ ...

AlexNet CNN
FC7 Layer SVM classifier

Figure 2: The FC7 layer of the Pretrained AlexNet network has
been employed for extracting features and train a SVM classifier.
Two different band combinations (red-green-bue and NIR-red-
green) have been formulated in order to exploit all the available
spectral information.

2.2 AlexNet Network

In order to overcome the previous problem we trained an Alex-
Net Network using the DeepSat dataset. The model consists of
22 layers: 5 convolutional, 3 pooling, 6 transfer functions, 3 fully
connected and 5 dropout and threshold. The model follows the
patterns as depicted in Figure 3. More specifically, the first con-
volutional layer receives the raw input patch which consists of 4
channels (or input planes) and is of size 28x28. The image is fil-
tered with kernels of size 4x3x3 and a stride of 1 pixel, producing
an output volume of size 16x26x26. The second layer is a transfer
function one which applies the rectified linear unit (ReLU) func-
tion element-wise to the input tensor. Thus, the dimensions of
the image remain unchanged. Next comes a max pooling layer,
which is used to progressively reduce the spatial size of the im-
age in order to restrict the amount of network computation and
parameters and protect from overfitting. This pooling layer uses
kernels of size 2 and a stride of 2, producing an output volume of
size 16x13x13.

The next 3 layers follow the same pattern (Convolutional-ReLU-
MaxPooling). The Convolutional layer accepts the 16x13x13
volume and produces an output of size 48x13x13 by using 3x3
kernels, with a stride of 1 and a zero padding of 1 pixel. The
Convolutional layer is followed by a ReLU and a MaxPooling
layer. The latter having kernels of size 3 and a stride of 2 is de-
livering output volumes of size 48x6x6. The seventh layer is also
a Convolutional layer which delivers an output of size 96x6x6 by
applying 3x3 kernels and stride and zero padding of 1. The eighth
layer is a ReLU one. Layers 9,10 and 11,12 follow the same
pattern (Convolutional-ReLU). The ninth layer is filtering the in-
put volume with kernels of size 3x3, with a stride of 1 and zero
padding of 1, delivering an output of size 64x6x6. The eleventh
convolutional layer uses the same hyperparameters. The twelfth
convolutional layer is a maxpooling one, which uses kernels of
size 2 and a stride of 2 to produce an output of size 64x3x3.

After that, we use some fully-connected (FC) layers. The thir-
teenth layer is a simple View one which converts the given vol-
ume of size 64x3x3 to an output volume of size 64*3*3x1=576x1.
Next comes a Dropout layer with a probability of 0.5, which
masks part of the current input using binary functions from a
Bernoulli distribution. This layer sets to zero the output of each
hidden neuron with probability of 0.5. The fifteenth layer is a
simple linear one, which converts the input volume of size 576x1
to an output volume of size 200x1. The linear layer is followed
by a Threshold (TH) one. The next 3 layers are of the same logic
(Dropout-Linear-Threshold) and have the same hyperparameters.
The 21-th layer is a Linear one, which results to an output volume
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Figure 3: A brief illustration of the AlexNet model which was employed here. The network takes as input patches of 4x28x28 (dimen-
sions). The network consists of 5 convolutional, 3 fully connected layers and 6 transfer function. A 4 or 6 way soft-max layer is applied
depending on the dataset.

of size 4x1, where 4 is the number of class scores. Lastly, we use
a soft-max layer with 4 or 6 ways depending on the tested dataset.

Regarding the implementation, we trained the model with a learn-
ing rate of 1 for 36 epochs, while every 3 epochs the learning rate
was reduced at half. We set the momentum to 0.9, the weight
decay parameters to 0.0005 and the limit for the Threshold layer
to 0.000001.

2.3 AlexNet-small Network

Another model that we tested was a simpler small AlexNet Net-
work. The model consists of 10 layers. The first layer is a convo-
lutional layer and is feeded with the original input image of size
4x28x28, producing a volume of size 32x24x24. In this setup,
we did not use the ReLU function but the Tangent one. Con-
sequently the Tangent layer comes after the first convolutional
one, applying the tangent function element-wise to the input ten-
sor. After that, follows a third max pooling layer which narrows
down the size of the image from 32x24x24 to 32x8x8. The next
3 layers follow the same pattern and result to an output volume
of size 64x2x2. Finally, 4 fully-connected layers follow. At this
point we should mention that the model does not contain Dropout
layers contrary to the previous full AlexNet model. Nonetheless,
results were satisfactory, mostly because of the 2 max pooling
layers which made the spatial size of the images smaller and con-
troled overfitting.

Finally, the parametrization for the AlexNet-small was chosen to
be similar with the previous full AlexNet one. Again we trained
the model with a learning rate of 1 for 36 epochs. The learning
rate was reduced in half at every 3 epochs. We set the momentum
to 0.9 and the weight decay parameters to 0.0005.

2.4 VGG Network

Moreover, we experimented with the recent VGG model [Jader-
berg et al., 2015] which was initially proposed for text recogni-
tion. The model consists of 59 levels and it repeatedly makes
use of specific layers that include dropout and batch normaliza-
tion [Ioffe and Szegedy, 2015]. It should be noted that these two
kinds of layers are very important in order to accelerate the entire
process and avoid overfitting, as the parameters of each training

layer continuously change. The first group of layers has 4 levels
and they have the following pattern: the training model starts with
a convolutional layer that takes the input image of size 4x28x28
and it produces an output of size 64x28x28. Then, a batch nor-
malization layer is applied with a value of 0.001 added to the
standard deviation of the input maps. After that, a ReLU layer is
implemented and lastly, a dropout layer with a probability of 0.3.
The next group of layers has also 4 levels and it follows the same
logic, except the last layer, which is a max pooling one of kernel
size 2 and a stride of 2 that converts the input from 62x28x28 to
64x14x14. These two groups of layers are repeatedly used with
the same hyperparameters, except dropout which sometimes has
a probability of 0.4. The last 7 layers of the entire training model
include some fully connected layers.

The deeper architecture of the VGG model requires bigger amount
of data as well as more training time. For that reason data aug-
mentation with horizontal and vertical flips was performed. Fi-
nally, the network was trained for 100 epochs, reducing the learn-
ing rate in half every 10 epochs.

2.5 Deep Belief Networks, Autoencoders, Semi-supervised
frameworks

Last but not least, the aforementioned CNN-based networks were
compared with classification frameworks which have been re-
cently evaluated in [Basu et al., 2015] for the DeepSat dataset. In
particular, approaches based on Deep Belief Networks, Stacked
Denoising Autoencoder and a semi-supervised one were employed.
The training and testing included both datasets using different pa-
rameters, features maps and configurations for each technique.
[Basu et al., 2015] concluded that the semi-supervised approach
was more suitable for the DeepSat dataset performing 97.95%
and 93.92% accuracies for the SAT-4 and SAT-6 datasets respec-
tively.

3. EXPERIMENTAL RESULTS AND EVALUATION

In this section the performed experimental results are presented
along with the comparative study. Both training and testing have
been performed separately for the two datasets of SAT-4 and SAT-
6. For the quantitative evaluation, the accuracy and precision

Benchmarking on DeepSat SAT-4 dataset
AlexNet Pretrained AlexNet AlexNet-small VGG

LC Class Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision
Barren Land 99.24% 99.02% 99.96% 99.88% 99.83% 99.54% 99.96% 99.85%

Trees 99.73% 99.51% 99.99% 99.98% 99.95% 99.90% 99.99% 99.97%
Grassland 99.13% 96.76% 99.96% 99.90% 99.81% 99.59% 99.95% 99.99%

Other 99.77% 99.73% 99.98% 99.98% 99.96% 99.95% 99.99% 99.99%
Overall 99.46% 98.75% 99.98% 99.94% 99.86% 99.75% 99.98% 99.95%

Table 1: Resulting classification accuracy and precision rates after the application of different deep architectures in the SAT-4 dataset.
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Benchmarking on DeepSat SAT-6 dataset
AlexNet Pretrained AlexNet AlexNet-small VGG

LC Class Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision
Barren Land 99.91% 98.72% 99.95% 99.41% 99.96% 99.70% 99.99% 100%

Trees 99.14% 98.78% 99.86% 99.58% 99.77% 99.33% 99.96% 99.87%
Grassland 99.04% 99.72% 99.97% 99.92% 99.95% 99.84% 99.99% 99.96%

Roads 99.16% 96.62% 99.84% 99.61% 99.74% 99.43% 99.89% 99.95%
Buildings 99.92% 98.93% 99.95% 99.08% 99.96% 99.08% 99.99% 99.61%

Water Bodies 100% 100% 100% 100% 99.99% 100% 100% 100%
Overall 99.57% 98.80% 99.93% 99.60% 99.90% 99.56% 99.98% 99.91%

Table 2: Resulting classification accuracy and precision rates after the application of different deep architectures in the SAT-6 dataset.

measures have been calculated.

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Precision =
TP

TP + FP
(2)

where TP is the number of correctly classified patches, TN is
the number of the patches that do not belong to the specific class
and they were not classified correctly. FN is the number of
patches that belong to the specific class but weren’t correctly clas-
sified and FP is the number of patches that do not belong to the
specific class but have been wrongly classified.

Regarding the experiments performed on the SAT-4 dataset, the
calculated precision and accuracy after the application of the dif-
ferent deep learning frameworks are presented in Table 1. One
can observe that all employed models have obtained quite highly
accurate results. More specifically, the overall accuracy rates
were in all cases more than 99.4%, while the estimated precision
was more than 98.7%. Therefore, the employed deep architec-
tures can address the classification task in this particular dataset
quite successfully. As expected, the estimated accuracy and pre-
cision rates for the Pretrained AlexNet were lower than the other
models, since it was trained on the ImageNet dataset. Moreover,
the use of the AlexNet pretrained network makes the computa-
tional complexity much higher than in the other models.

The other three models successfully classified all the correspond-
ing classes, achieving accuracy rates more than 99.90%. Addi-
tionally, as expected the AlexNet network performs slightly better
than the AlexNet-small, which means that the ReLU layer and
deeper architectures are more suitable for this specific dataset. In
particular, the class that scored lower regarding the accuracy and
precision was the grassland, as some patches were misclassified
as barren land or trees. The VGG and the AlexNet models resulted
into the higher accuracy/precision rates (i.e., above 99.94%).

Overall Accuracy
(%)

Method SAT-4 SAT-6
DBN [Basu et al., 2015] 81.78 76.41
CNN [Basu et al., 2015] 86.83 79.06
SDAE [Basu et al., 2015] 79.98 78.43
Semi-supervised [Basu et al., 2015] 97.95 93.92
Pretrained-AlexNet [Vakalopoulou

et al., 2015]
99.46 99.57

AlexNet (Proposed) 99.98 99.93
AlexNet-small (Proposed) 99.86 99.90
VGG (Proposed) 99.98 99.98

Table 3: The resulting overall accuracy rates after the application
of different learning frameworks for both datasets.

Regarding the experiments performed with the SAT-6 dataset, re-
sults from the quantitative evaluation are presented in Table 2. As
in SAT-4, the pretrained AlexNet model resulted into the lowest
accuracy and precision rates comparing to the other ones. The
VGG model was the one that resulted into slightly higher ac-
curacy rates than the AlexNet and AlexNet-small models. In all
cases the overall accuracy rates were higher than 99.6%. More-
over, one can observe that the water bodies class was easy to be
discriminated from the other ones, as in all cases the calculated
accuracy was more than 99.99%. On the other hand, the Roads
class was the one that resulted in the lowest accuracy rates as cer-
tain misclassification cases occurred with the Trees and Grass-
land classes.

In addition, for the qualitative evaluation of the performed ex-
periments the t-SNE technique [Van Der Maaten, 2014] was em-
ployed. t-SNE has been tested in different computer vision datasets
e.g., MNIST, NIPS dataset, etc. and it is suitable for the visual-
ization of high-dimensional large-real world datasets. In Figure
4 the visualization of the last layer features of the AlexNet-small
model for both SAT-4 and SAT-6 is shown. In particular, different
classes are represented with different colours in the borders of the
patches. One can observe that the different classes are well sepa-
rated in space, which can justify the high accuracy rates that have
been delivered and reported quantitatively in Table 1 and Table 2.

Last but not least, the deep architectures of AlexNet & VGG were
compared with the recently proposed and evaluated ones from
[Basu et al., 2015]. In Table 3, the overall accuracy rates for
both SAT-4 and SAT-6 datasets are presented. This benchmark
included results after the application of Deep Belief Network
(DBN), Convolutional Neural Network (CNN), Stacked Denois-
ing Autoencoder (SDAE), a semi-supervised learning framework,
AlexNet (pre-trained and small) and VGG. In [Basu et al., 2015],
the highest accuracy rates were obtained from the semi-supervised
classification framework and were 97.95% and 93.9% for the
SAT-4 and SAT-6, respectively. As one can observe all the pro-

Evaluating results from VGG without the NIR band
SAT-4 SAT-6

LC Class Accuracy Precision Accuracy Precision
Barren Land 99.96% 98.85% 99.99% 99.89%

Trees 99.99% 99.97% 99.90% 99.64%
Grassland 99.95% 99.99% 99.97% 99.85%

Others 99.99% 99.99% - -
Roads - - 99.99% 99.95%

Buildings - - 99.99% 99.95%
Water Bodies - - 100% 100%

Overall 99.98% 99.95% 99.96% 99.88%

Table 4: Resulting classification accuracy and precision rates af-
ter the application of the VGG model at both datasets without the
NIR Band.
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(a) Resulting classes from the SAT-4 dataset at the last layer of the AlexNet-small model

(b) Resulting classes from the SAT-6 dataset at the last layer of the AlexNet-small model

Figure 4: Qualitative evaluation based on the t-SNE technique. Results from the SAT-4 (top) and the SAT-6 (bottom) datasets are
presented. Different classes are defined with different colours in the borders of the patches. This visualisation corresponds to the last
layer of the AlexNet-small model.

posed and applied models in this paper (including the pre-trained
AlexNet which scored lower that the other ones) outperformed the
semi-supervised framework of [Basu et al., 2015]. The proposed
deep models efficiently exploited the available spectral informa-
tion (all available spectral bands) and created deep features that
could accurately discriminate the different classes.

In order to evaluate the contribution of the NIR band, we more-
over experimented with training the models with and without its
use. In particular, experimental results after applying the VGG
model to both SAT-4 and SAT-6 dataset are presented in Table 4.
As expected the classes of Tress and Grassland present lower pre-
cision and accuracy rates when the NIR band was excluded from
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the training process. However, the overall accuracy and precision
rates were slightly different, especially on the SAT-6 dataset.

4. CONCLUSIONS

In this paper, experimental results after benchmarking different
deep-learning frameworks for the classification of high resolution
multispectral data were presented. Deep Belief Network (DBN),
Convolutional Neural Network (CNN), Stacked Denoising Au-
toencoder (SDAE), a semi-supervised learning framework, Alex-
Net (pre-trained and small) and VGG were among the frameworks
that were evaluated. The evaluation was based on the publicly
available DeepSat dataset including both SAT-4 and SAT-6. Com-
paring with Deep Belief Networks, Autoencoders and Semi- su-
pervised frameworks [Basu et al., 2015] the proposed here Alex-
Net and VGG deep architectures outperform the state-of-the-art
delivering high classification accuracy rates above 99.9%. The
quite promising quantitative evaluation indicates the high poten-
tials of deep architectures towards the design of operational re-
mote sensing classification tools.
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