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ABSTRACT: 

The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying 
wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to 
consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land 
cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum 
Entropy distribution models for African savanna elephants (Loxodonta africana) using Globeland30 data analyzed at varying resolutions. 
We compared these with similarly re-sampled models created from the European Space Agency’s Global Land Cover Map (Globcover). 
These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar 
data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that 
the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed 
better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. 
Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. 
It may even be superior for applications which require higher spatial resolution and less nuanced classifications. 
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1. Introduction

There is a pronounced need for accurate modeling of species 
distributions at the landscape level, particularly within protected 
areas that are actively working to manage and conserve species 
of concern (Guisan et al., 2006). This is the case for African 
elephants (Loxodonta africana) within Kruger National Park 
(KNP), South Africa (DeKnegt et al., 2011). It is difficult to 
collect comprehensive presence and absence data for the 
estimated 12,000 elephants across the entire park (Smit et al., 
2007a). Furthermore, elephants have a home range of up to 
1,800 km2 in KNP, making it especially difficult to accurately 
track them within a park of 19, 485 km2 (Whyte, 2001; Grainger 
et al., 2005). 

For this reason, tools which incorporate remotely sensed data to 
produce accurate models of species distribution are highly 
useful for ecological research and conservation. These species 
distribution models (SDM) combine species occurrence data 
with geographically referenced environmental data as inputs 
into a statistical algorithm to infer the environmental restraints 
of the study species and predict areas with ecologically suitable 
habitat (Hernandez et al., 2006; Guisan et al., 2007). 

Many SDM’s require information on where the species 
presence and where it is absent, necessitating higher sampling 
effort (Guisan & Zimmerman, 2000). However, absence data is 
often unavailable for many species or less than reliable, since a 
lack of observation does not always equal a lack of presence 
(Philips et al., 2006). Therefore models which can produce 
accurate distributions with only presence data are desirable. 
One such SDM is Maximum Entropy, or MaxEnt, which ranks 
highly in model performance when compared with other SDM’s 
(Elith et al., 2006,; Hernandez et al., 2006). MaxEnt is a 
machine-learning algorithm which estimates the target 
probability distribution by finding the probability distribution 
that is most spread out, or closest to uniform (Phillips et al., 
2006). The inputs are presence observations for the species of 
concern as well as data for any environmental variables that 
constrain the species’ geographic distribution, such as available 
water, temperature, or disturbance. Many of these variables can 
be accounted for in land cover classifications, which 
incorporate the presence of landscape features. 

Recent improvements in satellite platforms and remote sensing 
image classification techniques have facilitated the creation of 
fine scale land cover data. One of the most prominent of these 
newly developed land cover data sets is the Globeland30 set 
produced by the National Geomatics Center of China. This is 
the first global land cover product with a resolution of 30 m and 
it opens new possibilities for global land cover studies since 
most human activities and changes in land cover can be 
detected at this scale (Chen et al., 2015; Han et al., 2015).  

Scale is an important consideration when collecting and 
analyzing ecological data. If a system is studied at an 
inappropriate scale, the target dynamics may not be captured; 
rather, any patterns described may instead be artifacts of scale 
(Wheatley & Johnson, 20090; Renner & Warton, 2013). In the 
case of habitat selection, the spatial resolution of landscape 
information analyzed can change the relative importance of 
individual variables (DeKnegt et al., 2011). Habitat selection by 
organisms can be based on multiple factors at varying scales, 
including the environmental characteristics of its immediate 
location as well as the characteristics of the surrounding
landscape (Guisan et al., 2006). Thus it is critical to understand

the effects of scale to create accurate species distribution 
models. 

The objectives of this study were twofold: 1) to test the utility 
of GlobeLand30 for creating species distribution models, and 2) 
to examine the effects of scale on analysis by modifying grain 
size, or the finest level of spatial resolution of the available data. 
Although Globeland30 has been used in multiple studies on 
subjects such as soil mapping (Hengl et al., 2015), cropland 
mapping (Lambert et al., 2016), and land cover change (Yushuo 
et al., 2015), we are unaware of any other studies using this data 
set for wildlife ecology applications. As such, this study 
represents the first application of Globeland30 data for wildlife 
ecology. We used MaxEnt software to compare Globeland30 
with an older and more widely used data set, Globcover, 
produced by the European Space Agency, which has a lower 
spatial resolution but a finer classification scheme. 

2. Methodology

2.1 Study Site 

Kruger National Park is located in the northeast portion of 
South Africa with a total area of 19,485 km2. It was proclaimed 
as a national park in 1926 and has become one of the largest 
wildlife sanctuaries in the world. KNP is a part of the “lowveld” 
savanna with altitude varying from 200 m to 840 m (Codron et 
al., 2006). The differences in climate and geology across the 
park produce a variety of landscapes (Gertenbach, 1983) 
leading to a patchy distribution of resources for different 
species (Crooks & Sanjayan, 2006). The park is divided into 16 
ecozones classified by dominant vegetation types. The climate 
of KNP is classified as tropical to subtropical and the average 
annual precipitation varies from 401 mm to 600 mm. Drought is 
endemic in this region, occurring typically from March to 
middle October, followed by the wet season from October to 
February (Tyson, 1986). 

2.2 Data Description 

For presence data we used GPS-collar-recorded coordinates of 
five female elephants in four different herds, with two elephants 
in the same herd. GPS collars from Lotek Fish and Wildlife 
monitoring system collected geographic coordinates every two 
hours from the beginning of October 1998 to February 1999 for 
a total of 8103 points, covering the end of the dry season into 
the wet season (Fayrer-Hosken et al., 1997). We created a 
minimum convex hull polygon around all of the points to serve 
as the boundary of our Area of Interest (Worton, 1987), 
enclosing an area of 6,073.03 km2 (Figure 1). The extent of our 
study area thus represented the home ranges of the elephants 
being observed during the period of data collection. Vector data 
of KNP, including tourist sites, roads, elevation, and a 
hydrology map containing both rivers and water holes were 
provided by the South Africa National Parks Scientific Services 
(SANSPark).  
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Figure 1. KNP and location of the study area (green polygon) 

We used two different landscape classification schemes in our 
models. The first, Globeland30, was produced by the National 
Geomatics Center of China and uses a combination of 30 m 
multispectral imagery from the TM5 and ETM+ sensors of the 
American Land Resources Satellite (Landsat) and the Chinese 
Environmental Disaster Alleviation Satellite (HJ-1) from the 
year 2010. The end product is a global land classification set 
with ten categories and a 30 m spatial resolution (Chen et al., 
2015). The second scheme, Globcover, produced by the 
European Space Agency, consists of imagery from the Medium 
Resolution Imaging Spectrometer (MERIS) on board the ESA’s 
ENVISAT satellite from the year 2009. The final product is a 
22 category classification with 300 m spatial resolution 
(Bontemps et al., 2011). 

2.3 Model Construction 

We followed the Maximum Entropy method described by 
Phillips et al. (2006) using the freely available MaxEnt software, 
version 3.3.3k (Schapire, 2012) to build multiple models of 
elephant distribution at varying spatial resolutions within 
Kruger National Park (Phillips & Dudík, 2008). We created two 
models at each spatial scale, one using the Globeland30 land 
classification scheme and the other using the Globcover scheme. 
Both classifications were re-sampled to isolate forests to make 

them comparable; all forest classes were assigned a value of 1, 
while all other classes were assigned a value of 0. By applying 
an 8-neighbor focal statistics function to calculate the mean 
value of the central cell within a 3x3 matrix, we generated 
continuous raster layers to serve as a proxy for forest cover. 
This transformation was tested against a model run with the 
unaltered classification schemes and was found to consistently 
produce a higher AUC score. In addition to forest cover, we 
generated 7 other raster layers of environment variables (Table 
2). We created a total of seven models, each with one of the two 
landscape classification schemes at varying spatial resolutions. 
The first 4 models were created using GlobeLand 30, with 
spatial resolutions of 30 m, 300 m, 600 m, and 900 m. Since the 
original resolution of Globcover is 300 m it could not be used to 
create a model at 30 m scale. Thus, the remaining three models 
used Globcover at 300 m, 600 m, and 900 m resolutions. The 
other 7 environmental variables were also re-sampled to match 
the spatial resolution of each model. 

Ten thousand randomized background points were selected 
from the area encompassed by the minimum convex hull 
polygon to create pseudo-absences. One elephant’s full 
movement pattern, consisting of GPS points taken every hour 
from September 1995-February1996, was used as presence data. 
The results of 15 iterations were averaged to create the final 
models. Subsequently model performance was evaluated using 
a sub-sample of all of the elephant GPS-collar points. This 
sub-sample consisted of every 12th point in the data set, 
approximating 2 points per day per elephant over the length of 
time each elephant’s collar was active.  

2.4 Evaluation 

We evaluated the models using a Receiver Operating Curve 
(ROC) analysis, using the Area Under the Curve (AUC) as a 
measure of model fitness, where values higher than 0.5 indicate 
that the model predictions are better than random. The AUC 
method has been popularized as an omnipotent statistic in 
assessing the predictive accuracy of species distribution models 
and is directly offered by the MaxEnt package 
(Jiménez-Valverde, 2012; Phillips & Dudík, 2008). 

3. RESULTS

The prediction maps in Figure 2 show the probability of 
elephant occurrence within the study area for two models: 
Globeland30 and Globcover, both at 600 m spatial resolutions. 
The highest probability of elephant occurrence is scattered 
around the center of the study area, with another area of high 
probability to the north. These predictions generally match the 
GPS collar data of elephant presence. 
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Figure 2. Prediction maps from MaxEnt showing probability of elephant occurrence within the study area based on the Globeland30 
(left) and Globcover (center) based on GPS collar training data, a subset of which is shown over Globeland30 classification scheme 

(right). 

For each model, the area under the Receiver Operating Curve 
was calculated, also known as an Area Under the Curve (AUC) 
score. AUC scores represent the slope of a line x

y
 in which y 

is the rate of commission error and x is the rate of omission 
error, with all of the observation data placed along this line. 
Thus, the AUC score is an indication of how well each model 
classifies a presence observation as a presence and a 
pseudo-absence as an absence and serves as a good metric of 
model performance (Phillips et al., 2006). 

Of the models developed, those based on Globeland30 
outperformed the Globcover models at 3 out of the 4 spatial 
resolutions we tested according to AUC scores (Figure 3).  

Figure 3. Comparison of AUC scores of MaxEnt models 
created with Globeland30 and Globcover. 

The models in which all variables were re-sampled to 600 m 
performed best. Analysis at the coarsest resolution, 900 m, had 
the worst scores; however the AUC of the finest resolution, 30 
m, was a close second. The highest AUC score was the 
Globeland model at 600 m (0.825) while the lowest score was 
the 900 m Globeland model (0.8) (Table 1). 

Globeland30 Globcover 
30 m 0.801 N/A 

300 m 0.817 0.811 
600 m 0.825 0.821 
900 m 0.800 0.804 

Table 1. AUC scores for all of the models developed. 

A jackknife test of variable importance was carried out for each 
model developed in order to assess the explanatory power of 
individual parameters. A comparison of jackknife tests between 
Globeland30 and Globcover models at a 600 m spatial 
resolution demonstrates the greater relative importance of 
Globeland30 over Globcover in their respective models. In 
addition, we observed that, although some parameters had more 
explanatory power alone, the model performance did not 
drastically differ when any single one of the parameters were 
removed, indicating that none of the parameters we measured 
contained information that couldn’t be partially accounted for in 
other variables (Figure 4). 
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Figure 4. Jackknife tests of variable importance for Globeland30 (top, glo_contin) and Globcover (bottom, esa_contin) models at 600 
m. The explanatory power of each individual parameter relative to the total AUC score is represented by the blue bar.

The percent contribution of each variable to the overall model 
performance remained fairly consistent across all models 
(Figure 5), however there was some variation in the ranked 
importance of variables. These changes in variable importance 
did not follow a trend according to spatial scale of analysis 
(Table 2), thus we attribute them to stochasticity within the 
models. 

Finally, of all of the environmental variables included in the 
model, elevation was consistently the most important, followed 
by distance to tourist sites, and then distance to rivers. 
Distances to dams, roads, boreholes, and forest cover as 
calculated from the classification schemes were of 
interchangeable importance, varying by spatial resolution. 

Figure 5. Graph showing the percent contribution of each parameter within all of the models created. 
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GlobeLand30 Globcover 
30 m 300 m 600 m 900 m 300 m 600 m 900 m 

Elevation 33.6 33.3 34.8 36.2 34.4 35.8 35.8 
Distance to Tourist 
Sites 21.7 21.4 21.4 22.5 21.7 21.4 23 

Distance to Main River 23 23.6 21.4 20.3 21.1 21.3 19.5 
Distance to Dams 6.8 5.3 5.7 8.3 6.3 5.7 8.3 
Distance to Road 4.8 5.9 4.5 3.1 6.2 5 4.3 
Distance to Boreholes 3 4.6 3.7 3.6 5 3.9 3.5 
Forest Cover 2.2 3.8 5.7 3.5 3.1 4.5 3.3 

Table 2. Percent contribution of each parameter for each model, categorized by spatial resolution and land cover classification used. 

4. DISCUSSION

This study presents a broad comparison between two land cover 
data sets in terms of their different classification schemes and 
spatial resolutions using movement data from a small number of 
elephants. We employed the AUC method included in the 
MaxEnt package to compare model performances (Guisan et al., 
2007; Hernandez et al., 2006; Matawa et al., 2012). Although 
AUC scores can only be used to compare the models, there 
remain informative conclusions to be drawn from the general 
trends. 

Of the environmental variables analyzed, forest cover generally 
had the lowest relative contribution to model performance. This 
could be due to the high portion of grasses in the diet of 
elephants within Kruger National Park, who consume 
approximately 50% grasses in the wet season (Codron, 2006). 
Additionally, this could be attributable to the uncertainty that 
was introduced by the reclassification process. In the original 
Globcover product, pixels were classified by percent 
composition of forest, grass, agriculture, etc. Our 
reclassification, which assigned pixels containing more than 
50% forest as forest cover, was necessary to make the two 
classification schemes directly comparable. Ultimately, our 
reclassified landcover had a higher relative importance and 
higher model AUC compared with models built with the 
original Globcover and Globeland30 products. Additionally, 
Globeland30 models still performed better in the majority of 
spatial scales tested. Finally, it may be an artifact of the 
classifications themselves being created partially from 
supplementary data sets including water and elevation (Chen et 
al., 2015; Bontemps et al., 2011).  

The low relative importance of artificial water points, the 
boreholes and dams, is likely due to the GPS data being 
recorded primarily during the rainy season, when natural water 
supplies are more abundant (Van Wyk, 2010). Moreover, KNP 
is not a highly water limited system for elephants, with few 
areas being more than 10 km away from natural water sources 
(Smit et al., 2007b). Due to their high rates of evaporative and 
respiratory water loss, distance to water is an important 
determinant of elephant movement and distribution, (Stokke & 
Du Toite, 2002; Smit et al., 2007a). As such, the high 
contribution of the distance to main rivers variable is expected. 
Distance to tourist sites also had a high relative contribution, 
though this is likely an artifact of correlation, as these sites are 
purposely located at locations where elephants tend to 
congregate and visit repeatedly (Van Wyk, 2010). 

The single most important contributing variable was elevation 

derived from DEM data. We attribute this to its deterministic 
relationship with other variables that are explicitly or implicitly 
included in the model. Elevation is largely responsible for the

direction of water flow, vegetation types, soil classes, and 

frequently tourist site locations. Additionally, elephants tend to 
eschew steeper areas in favor of easier to traverse level plains, 
avoiding energetically costly ascents (Wall & Vollrather, 2006). 

Although the AUC scores were generally quite close, the 
models built with Globeland30 outperformed those with 
Globcover in 3 out of 4 resolutions tested. The lack of greater 
discrepancy in scores between scales of analysis may be 
attributable to the relative simplicity of the models themselves, 
as models with insufficient predictive power may fail to show 
large scaling effects (Guisan et al., 2007). Still, the overall 
disparity in scores could be due to differing amounts of 
ecologically relevant information being captured by the 
differing resolutions. The Globeland30 classification scheme 
has a ten times finer spatial resolution - though it can 
differentiate between fewer classes. However, elephants may 
perceive their landscape as a gradient of resources and habitat 
rather than a systematic division of classes and sub-classes, in 
which case a coarser classification scheme might be favorable. 

Our models maintained a constant extent, or total area covered 
by the data set, consisting of the entire range of movement 
points of the elephants which, in turn, defines their effective 
movement range for the duration of data collection. The 
changing grain size represents differing possible scales at which 
elephants might perceive and make decisions about their 
environment (Baguette & Van Dyck, 2007). A study by De 
Knegt et al. (2010), found that elephants responded to their 
environment in a scale dependent manner, responding to forage 
at coarser scales and water at finer scales. In future studies we 
may attempt to isolate and compare the relative importance of 
variables across scales. For the current study, our results may 
indicate only the scale at which elephants’ decisions can be 
generalized most accurately to predict spatial distribution. The 
best performing model was analyzed at a 600 m spatial 
resolution. Although AUC scores do not allow us to draw 
ecological conclusions, this is the best model statistically. This 
indicates that for those attempting to study or manage elephant 
distributions, data should be collected and analyzed at this scale 
for the most accurate results. It is worth noting that, even 
though the models for both classifications were re-sampled to 
the same scale, the Globeland30 model still performed better at 
600 m. The additional information contained in the original 30 
m resolution product still translates to the coarser re-sampled 
resolution. 

5. CONCLUSION

From our results, we conclude that, despite having a less 
nuanced classification scheme, Globeland30 can be equally 
useful, or even superior, for predicting species distribution 

compared to the ESA’s Globcover. We examined a species with
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a large home range which can be readily analyzed at different 
spatial resolutions. However for smaller species with smaller 
home ranges and restricted mobility across the landscape, a 
300m classification scheme may be insufficient for accurate 
modeling purposes. Further tests with presence data for a 
species with these range restrictions might demonstrate a 
greater discrepancy in accuracy and utility between the two 
classifications and across scales. 

In addition, our results demonstrate the importance of collecting 
data and analyzing it at an ecologically relevant spatial scale. 
This is a crucial consideration to be made when designing 
studies; the spatial needs of the species or ecological process of 
concern should be carefully examined to inform the design of 
models. 
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