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A systematic study of the problem of spherulitic growth in linear polymers in bulk has
been carried out. A calculation of the radial growth of polymer spherulites is given for four
models. These concern growth where the surface nuclei that control the rate are (1) bundle-
like and coherent, (2) chain folded and coherent, (3) chain folded and noncoherent, and (4)
bundlelike and noncoherent. The required modifications of nucleation theory are given.
Then the radial growth rate laws are derived for each model, and the type of “spherulite”’
that would be formed discussed.

The model with chain folded and coherent growth nuclei leads to a typical lamellar
spherulite. The properties of the individual chain folded lamellae that form the spherulite
are predicted, including the change of step height with growth temperature, melting behavior,
and the behavior on recrystallization. (Chain folded lamellae may also occur in specimens
that are not obviously spherulitic.) Under certain conditions, the noncoherent model with
chain folds can lead to a modified lamellar spherulite. None of the bundlelike models will
lead to a typical lamellar spherulite, though a spherical microcrystalline object might be
formed. It is concluded that lamellar spherulites consist largely of chain folded structures.

The factors that could cause chain folded crystals to appear in profusion in bulk polymers
are discussed. The case of homogeneous initiation is considered first. Homogeneous initia-
tion of chain folded nuclei in bulk will prevail if the end surface free energy of the bundlelike
nucleus exceeds that of the folded. It is shown that the end surface free energy of the bundle-
like nucleus, as calculated with a density gradient model, will be larger than had been sup-
posed previously. It is therefore considered to be theoretically possible that the end surface
free energy of the bundlelike nucleus may in some cases exceed that of the folded nucleus.
Attention is given to the possibility that folded structures appear in large numbers because
cumulative strain or large chain ends prevent the growth of bundlelike nuclei to large size,
even when the latter type of nucleus is energetically favored when small. Heterogeneous
initiation of folded structures is then considered.

Other topics mentioned include: (1) Conditions that might lead to nonlamellar or non-
spherulitic erystallization in bulk, (2) the origin of the twist that is frequently exhibited by
the lamellae in spherulites, (3) the transitions that may sometimes occur in the radial growth
rate law, and (4) interlamellar links.
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1. Introduction

In recent years there has been much interest in the
growth of spherulites in bulk polymers. These ob-
jects are the principal site of the crystallization in a
number of highly crystallizable linear polymers, at
least under certain conditions. Further, the mechan-
ical, optical, and dielectric properties of such poly-
mers are known to be affected by the presence of

1 It is recommended that only the sections marked with a star (%)Ybe con-
sidered in a first reading of the paper. These sections treat many of the main
issues, and include the most important models of lamellar spherulitic growth
(sections § and 6).

spherulitic crystallinity. Hence the rate of spheru-
litic growth, and the type of crystals existing in the
spherulites, are of prime importance in connection
with any attempt to understand the physical proper-
ties of these systems. KExcept where specifically
noted otherwise, this paper is confined to crystalliza-
tion from the unoriented melt. Attention is directed
mainly to polymers that may be represented as
systems of flexible linear chains which can in time
achieve a high degree of crystallinity.
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In introducing the subject of the nature of the
crystals in polymer spherulites, it is essential to
first mention the important studies of Keller and
coworkers [1, 2] * on the nature of the platelike single
crystals of linear polymers that may be deposited
from supercooled dilute solutions. Polymer crystals
formed in this manner consist of regularly shaped
platelets that have a thinness or ‘“step height” of
roughly 50 to 250 A, depending on the degree of
supercooling. (The step height is larger the lower
the supercooling.) By electron diffraction experi-
ments, Keller demonstrated that the long axes of the
polymer molecules in such crystals are approximately
perpendicular to the large and flat upper and lower
surfaces. Since the polymer molecules were known
to be much longer than the step height, the startling
but nevertheless definite conclusion was reached that
the upper and lower surfaces consist of chain folds.
Stacks of thin platelets resembling a terraced pyra-
mid are frequently formed in dilute solution prepara-
tions, often around what appears to be a spiral
dislocation. In such cases, each terrace step corre-
sponds to the thickness or step height of a single
crystal. A theory describing the formation of single
polymer crystals from dilute solution has been given
by Lauritzen and Hoffman [3].

Spherulites in bulk polymers grow outward from
a nucleation center that is frequently of a hetero-
geneous character. The radial growth of a spheru-
lite is commonly the result of the formation of stacks
of bladelike lamellae that grow outward from the
nucleation center. As shown in electron micro-
graphs of surface replicas of spherulites, these
lamellae possess a thickness or “step height,” corre-
sponding to the thin dimensions of the blade, that
is commonly between 50 and 250 A. The resem-
blance between the system of steps seen in a bulk
polymer and the steps seen in the stacks of chain
folded platelets in a dilute solution preparation of
the same polymer is most striking. It is well known
from optical studies that the polymer chains in the
crystalline matter in spherulites are approximately
normal to the spherulite radius. Since the lamellae
lie mostly parallel to the radius of the spherulite, it
is therefore reasonable to assume that the polymer
chains are more or less normal to the large flat
surfaces of the lamellae. (Evidence interpretable as
proof that the chain axes are nearly normal to the
flat lamellar surfaces in polyethylene has been ob-
tained by microcamera X-ray diffraction studies by
Fujiwara [42]. Other investigators [4] have shown
by optical methods that a similar condition probably
applies in certain other cases.) The lamellae often
twist as they grow outward, so that a given sector of
a spherulite somewhat resembles a stack of propeller
blades (twisted lamellae) radiating from a central
point. We refer to an object fitting this general
description as a lamellar spherulite.®

In view of the above, it is certainly reasonable to

¢ Figures in brackets indicate the literature references at the end of this paper.

3 The schematic representation of the orientation of the lamellae and the poly-
mer molecules in the lamellae, and the general nature of lamellar twist shown in
figures 6 and 7 may prove useful in understanding the above general description
of a lamellar spherulite. In realspherulites, the lamellae may be more fragmented
and imperfect than shown in these figures.

give strong consideration to the possibility that a
lamellar spherulite formed in bulk consists of chain
folded crystals of the same general type known to
arise in dilute solution, and to consider spherulite
growth mechanisms based on the chain folded
pattern. At the same time, one must attempt to
construct a lamellar spherulite on the customary
bundlelike pattern. By carrying out calculations on
both models, it is possible to arrive at certain conclu-
sions concerning the existence of chain folded crystals
in bulk polymers. In the course of such an attack
on the problem, it is natural to see if any of the models
are capable of predicting the existence of a non-
lamellar spherulite.

While no attempt will be made in this paper to
effect a detailed comparison of theory and experi-
ment, or to give a complete survey of the experi-
mental situation with respect to the nature of
spherulitic crystallization in bulk polymers, it is of
interest to mention some of the studies on which the
above remarks on spherulitic structure in bulk are
based. Much of what is known about lamellae in
spherulites has been learned from studying electron
micrographs. An outstanding example of this ap-
proach is to be found in the recent work of Geil [5]
on polyoxymethylene, where clear evidence of the
lamellar structure of bulk ecrystallized material is
presented. Geil, Symons, and Scott [6] have shown
that chain folded crystals with a rather similar step
height are formed from dilute solution by polyoxy-
methylene; the resemblance between the terraces
formed by stacks of chain folded crystals in dilute
solution and the terraces seen in material crystallized
in bulk is especially striking in this polymer. Eppe,
Fischer, and Stuart have presented clear evidence of
lamellar structure in bulk polychlorotrifluoroethylene
[40]. This and other examples that could be cited
render it clear that lamellar structures are common
in linear polymers crystallized in bulk. Information
on the orientation of the lamellae and polymer chains
in spherulites, and the twist of the lamellae, has been
obtained by optical microscopy together with a de-
tailed theory of the extinction patterns of such objects
due to Keller [7], Keith and Padden [8, 9], and Price
[10]. The beautiful rings seen in spherulites in a
polarizing microscope are a result of the twist of the
lamellae.

The body of the paper begins with a discussion of
homogeneous initiation of bundle and loop type
structures in bulk. Tt is concluded that if homo-
geneous nucleation is the cause of the prevalence of
folded structures in bulk, the end surface free energy
of the bundlelike nucleus, o,, must exceed that of the
end surface free energy of the nucleus with chain
folds, @.. (A simple bundlelike nucleus model that
explicitly involves the density gradient at the bundle
end is used to bring out certain factors that may
contribute to ¢..) Then the possibility that large
chain ends or strain may tend to subdue growth of
bundlelike nuclei to large size is considered. Finally,
since it is by no means certain that spherulites
are generally of homogeneous origin, heterogeneous
initiation of chain folded lamellar structures is
discussed.
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With this background, attention is then directed
toward the problem of calculating the isothermal rate
of radial growth of spherulites as a function of tem-
perature in supercooled bulk polymers. This prop-
erty has been singled out for special emphasis be-
cause 1t can often be determined experimentally as a
function of temperature, and does not depend on
whether the spherulites are of heterogeneous or homo-
geneous origin.

Radial growth where the rate determining step is
the formation of a two-dimensional coherent surface
nucleus is treated first. (By the term “coherent”
we mean to imply that the crystal structure and
molecular orientation in the surface nucleus and in
its polymer substrate are essentially the same.) Both
bundlelike coherent surface nuclei and coherent sur-
face nuclel with chain folds are considered.

Treatments of radial spherulitic growth by two-
dimensional coherent surface nucleation have been
given by Burnett and McDevit [11], Kahle and
Stuart [12], Takayanagi [13], and Hirai [14]. We
must now indicate why we shall add yet another.

First, it is considered desirable to give a detailed
analysis of spherulitic growth for coherent nuclei
with chain folds. Second, it is instructive to re-
examine the theory of the radial growth rate for
coherent bundlelike nuclei. It is evident that some
problems connected with this model have not been
emphasized previously, nor its full range of behavior
elucidated. Third, it is necessary to treat the gen-
eral problem of growth by monomolecular accretion,
taking into account the fact that the activated state
is in some instances reached in one step. This leads
to an important revision of the nucleation and growth
rate expressions, especially in the chain fold case.
Fourth, it is important to consider the role of chain
ends on the formation of polymer crystals. Finally,
it 1s considered to be of special interest to examine
closely the connection between a given model for
the growth rate, and the physical structure and
orientation of the crystalline bodies that this model
actually implies in a spherulite. 1t will emerge that
some of the models frequently cited in the literature
and used for the analysis of radial growth rate data
on spherulites will not lead to typical spherulitic
structures.

1t will be demonstrated that radial growth through
the agency of coherent nucleation with chain folds
can lead to a three-dimensional object recognizable
as a lamellar spherulite. The existence of the
lamellae, the orientation of these lamellae and the
molecules in them with respect to the spherulite
radius, the dependence of the step height on growth
temperature, recrystallization behavior, and the
twist exhibited by the lamellae, can be predicted.
It is adduced that the coherent bundlelike model
cannot lead to a lamellar spherulite.

The theory given here for the rate of radial spheru-
litic growth in bulk as controlled by coherent sur-
face nuclei with chain folds is based mostly on an
analysis by Lauritzen and Hoffman [3] on the appear-
ance of polymer crystals with chain folds from dilute
solution. Price [15] has independently treated
some aspects of this problem.

The problem of calculating the rate of radial
growth of a spherulite where the rate determining
step is the formation of a three-dimensional non-
coherent surface nucleus is treated next. (By the
term  “noncoherent” we mean to indicate that
the orientation of the molecules in the surface
nucleus is different from that in the polymer crystal
to which it is attached, so that a definite interface
exists between the substrate polymer crystal and
the surface nucleus.) As before, bundlelile nonco-
herent surface nuclei, and noncoherent surface
nuclei with chain folds, are treated. The concept of
noncoherent surface nucleation in spherulites treated
here is based largely on an interesting suggestion
due to Price [16]. The radial growth rate laws are
given, and the nature of the resultant physical
structures is predicted.

The results obtained for the bundlelike nonco-
herent growth model resemble in general form those
given previously by Flory and Melntyre [17], who
proposed that the free energy of formation of the
three-dimensional bundlelike surface nucleus is in
some manner lowered in the vicinity of the growing
boundary compared to the free energy of formation
of the corresponding three-dimensional homogeneous
nucleus. The present treatment is more explicit
concerning the possible cause of the lowering of the
free energy of formation of the surface nucleus.
The noncoherent bundlelike model might possibly
lead to a spherical and microcrystalline but non-

lamellar object. The noncoherent chain folded
model leads to a somewhat modified lamellar

spherulite.

In all the caleulations of the radial growth rate,
an effort has been made not only to derive the rate
laws near and somewhat below the melting point, but
also to determine the type of behavior that might
obtain at strong supercooling. Rather abrupt
changes in the radial growth rate, and even the
mode of crystallization, may occur with sufficient
supercooling.

Toward the end of the paper, the radial growth
rate equations are summarized in tabular form,
and a discussion presented on various aspects of the
initiation and growth of spherulites, and lamellar
and nonlamellar crystallization in polymers.

% 2. Rate of Homogeneous Initiation in Bulk
for Bundlelike and Chain Folded Nuclei

2.1. Homogeneous Nucleation Theory

Turnbull and Fisher [18] give for the steady state
rate of homogeneous nucleation in a condensed
system the expression

I - NET _ (AS*\ < LLL*) W)(_Adf)'

) L‘\p< k)“p Tr ) P T
1)

Here 7T is the absolute temperature, h Planck’s

constant, & Boltzmann’s constant, A//* the heat of
activation of the elementary jump rate process at
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the supercooled liquid—mnucleus interface, AS* the
corresponding entropy of activation, and A¢* the
free energy of formation of a nucleus of ecritical
size, i.e., a nucleus at the saddle point in the appro-
priate free energy surface. The constant K has a
numerical value within several orders of magnitude
of unity for most nucleation problems of interest,
and may be ignored for the present.* Equation (1)
was derived on the basis that the nucleus contains
a large number of segments or atoms, and is built up
in a stepwise manner. The net nucleation rate was
obtained by summation over all forward and back-
ward reactions. The pre-exponential factor (Nk7'/h)
exp (AS*/k) nuclei sec™ mole™ may be converted to
Lo= (NkT/hm,V,) exp (AS*/k) nuclei sec™* cm ™3, where
my is the molecular weight of the length of polymer
segment, that enters the nucleus in an elementary
process, and V, the specific volume of the super-
cooled liquid.

The main problem is the calculation of A¢* in
terms of the surface free energies and other param-
eters associated with the model under consideration.

2.2. Primary Bundlelike Nuclei: The End Surface
Free Energy Problem

We employ a bundlelike primary nucleus that is
a rectangular parallelepiped as shown in figure la.
The quantity ¢ is the lateral surface free energy,
and ¢, is the end surface free energy. The surface
free energies are defined as the work that is needed
to isothermally form 1 e¢m? of the appropriate type
of surface from the required number of segments in
the normal (interior) crystalline phase.

The rectangular parallelepiped model is not pro-
posed with the intention of conveying the meaning
that the cross section of a nucleus or crystal is
necessarily rectangular. The cross section could
have other shapes, e.g., a parallelogram, hexagon, or
other polygon. The lateral faces of the erystal will
correspond to some single preferred crystallographic
plane, and the lateral surface free energy o will
correspond to the work required to form 1 em? of
this surface. The particular geometrical model
chosen 1is just the simplest that is sufficiently illus-
trative of the phenomena we wish to discuss.
The slight modifications necessary to deal with
other cross-sectional shapes have been outlined else-
where [3].

Lateral Surface Free Energy (Bundles): The lateral
surface free energy o refers to a definite and well
defined surface, and a reasonably good estimate of
its numerical value can be obtained. We should
expect o to be fairly close to that for a typical molecu-
lar crystal of approximately the same chemical com-
position as the polymer, since the molecules on the
lateral faces are not “connected” through covalent
bonds to the surrounding supercooled liquid. Rough
estimates of ¢ may be surmised from the results of
Thomas and Stavely [19] on homogeneous crystalli-

4 For many models treated in this paper, K varies as (A7)-2, neglecting less
important temperature variations. Even such a dependence on temperature in
the pre-exponential term is trivial in the analysis of data, the other terms being
much more important.

(a)

Ficure 1. Bundlelike and chain folded primary nuclei.

(a) Bundlelike nucleus; ordinary symbols are used to denote the dimensions
a, b, and I, and the lateral and end surface free energies s and oe. A density gra-
dient of considerable extent in the I direction will exist at the end surface.

(b) Nucleus with chain folds: bold face symbols are used for the dimensions a, b,
and 1, and the lateral and end surface free energies e and o,. Well defined surfaces
exist on all faces.

zation in fogs of supercooled droplets of simple non-
chain organic compounds. From this work we
would anticipate that the lateral surface free energy
o would frequently be in the range of 5 to 25 erg
cm 2

It is useful to indicate a method of estimating
the lateral surface free energy for a polymer that
should generally give a value that is more accurate
than would be guessed simply by perusing the
results on nonchain type molecular crystals quoted
by Thomas and Stavely. Several authors [19, 20]
have suggested that for a specific class of compounds
the ratio of the work required to form a certain
amount of surface phase to the heat of fusion of
the same amount of bulk phase is approximately a
constant. This ratio may be written as

@hyd—® 2

where (Ah,) is the heat of fusion in erg em™, d the
lattice spacing in ¢cm, and o the surface free energy
in erg em™?.  The constant « is about 0.5 for many
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metals [20], and about 0.3 for simple (non-chainlike)
molecular ecrystals [19]. Using the values of o
obtained from carefully conducted homogeneous
nucleation experiments with pure chain hydrocarbons
dispersed in water recently quoted by Turnbull [21]°,
we estimate that « is about 0.1 for the paraffin
chain system. This value of a should hold quite
well for the calculation of the lateral surface free
energy o of polyethylene (¢ ~ 10 erg em™2). It is
to be expected that a fairly similar value of a will
hold for the estimation of the lateral surface free
energies of other linear polymers. Turnbull’s tech-
nique could be used to obtain more precise values
of a appropriate to other types of chain structure.

End Surface Free Energy (Bundles): The value of
g, appropriate to the bundlelike nucleus is difficult
to assess. No reliable experimental values seem to
be available. Flory [22] has treated the configura-
tional contribution to the end surface free energy for
a bundlelike crystal as a function of concentration.
In this formulation, the end surface free energy at
2,=1 (bulk phase) is proportional to R7 In D, where
D is a parameter. No theoretical method of evalu-
ating ) was given. Also, Flory’s treatment does
not deal explicitly with the density gradient region
at the bundle ends, where important contributions
to o, will arise.

Insight into some of the factors that will contribute
to the work required to build the end of a bundlelike
nucleus with a flat end may be gained by noting the
calculations in the appendix, section 10, for a cylin-
drical bundlelike nucleus with a density gradient at
the bundle ends. This simplified treatment shows
to the approximations indicated (see eq (A-20) of
the appendix) that

la(Ahs)pe | La(Ap)2peT
o= )
601 6pip.

(3)

Here [, is the length of one of the diffuse bundle ends
in cm, (Ah,) the heat of fusion in erg em=2, p, and p;
the density in g em™ of the crystal and supercooled
liquid, respectively, (Ap)=p,—p1, po=(po+p1)/2, and
T a constant in erg em™ that may reasonably be
expected to exceed zero. The magnitude of T' is
related to the height of the maximum that will exist
in the free energy somewhere in the bundle ends.
This maximum must exist in order to cause phase
separation, and may result from either repulsion or
abnormal separation of the segments in the partly
disordered region of the bundle ends. The deriva-
tion of eq (3) is valid only when the cross section of
the nucleus contains a fairly large number of polymer
molecules.

Equation (3) with T'=0 may be used to obtain a
reasonable lower limit on the value of &, for a bundle-
like nucleus with a flat end, which we call o, umin).
The minimum value of ¢, implied by eq (3) is sur-
prisingly large. For example, with (Ah,)=3>}10°
erg cm™®, p./p,;=1.15, parameters that apply approx-

S Turnbull finds ¢=9.6 erg cm-2 for n-octadecane and ¢=7.2 erg cm-=2 for
m-heptadecane. The high end surface free energy that may exist in large bundle-
like nuclei or crystals in a high molecular weight polymer will not appear in
such short chain materials.
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imately to polyethylene,® when taken jtogether with
the assumption that /,=10x<107* em=10 A, lead to
Tominy =60 erg em™2  Reflected in this result is the
fact that a fairly large amount of work will be re-
quired to construct an interface between two phases
that are connected together by chains containing
covalent bonds.

The true value of o, for polyethylene is probably
in excess of this, since T' may be greater than zero.
Also, certain cumulative strain contributions are
neglected in the derivation of eq (3), and these
would further increase o.. From the above we draw
the conclusion that it is not necessary to consider the
effect of small ¢, values, i.e., those substantially
smaller than the lateral surface free energy o, in cal-
culating the properties of bundlelike nuclei.” 1t is
entirely possible that o, for bundlelike nuclei may be
at least several hundred erg em™ in some instances.

An analysis of the particular model used to arrive
at eq (3) does not suggest a marked dependence of
o, on temperature. Nevertheless, even the simpli-
fied treatment outlined in the appendix indicates
that, under certain circumstances, o, could depend
on temperature to a noticeable extent. In view of
the above, we must emphasize that the calculations to

Ffollow with o, treated as a constant are approximate.

Nevertheless, they are believed to be sufficient for
the purpose of dealing with the question of how
nuclei with chain folds might come to prevail over
bundlelike nuclei in bulk. The symbol ¢, in the ex-
pressions to be derived for the bundlelike nucleus
may be thought of as representing an effective value
containing contributions analogous to those shown
in eq (3).

2.3. Rate of Homogeneous Nucleation for Bundlelike
Nuclei

Region A (steady state nucleation): In the tempera-
ture region near and somewhat below the melting
point, which we designate region A, the primary
nuclei are much larger than the unit cell, and the free
energy of formation of a bundlelike crystal or em-
bryo of the type shown in figure la may be written

Ap=2aba,+-2alo+2bls—abl(Af), -

where a, b, and [ are treated as variables. (Af) is
the bulk free energy of fusion per unit volume of
crystal. Both o and o, are regarded as constants.
The problem is to calculate A¢* by finding the saddle
point in the free energy surface described by eq (4).

The saddle point in the free energy surface
described by eq (4) is found by setting 0A¢/0a),;,
0A¢/db).; and 0A¢/Ol)a, equal to zero to get a*=
40/(Af), b*=40/(af), and [*=40,/Af. As plotted on
the orthogonal coordinates Ag¢, [, (ab)¥?, the saddle

6 (Ahs) is within a factor of 2 of 1.5X10° erg em-3 for many linear polymers.

7 This reverses an earlier opinion [3] that detailed consideration should be
accorded the case where o, is substantially smaller than o. Calculations based
on the assumption ¢.<<o¢ lead to a shift in the nucleation rate from the
customary (AT)-2to a (AT)-1law at some moderate degree of supercooling [3].
It is improbable that this will commonly occur. Equation (3) indicates that it is
highly unlikely that o. will be zero, as has sometimes been assumed for bundle-
like nuclei.



point is at [*=4¢,/Af, and (a*b*)"*=40¢/(Af). In-
serting these values into eq (4) the value of the free
energy of formation at the saddle point is found to be

~ 320%,
—@an?’

which may be compared with the value S8ro’s./(Af)?
for a bundlelike nucleus with a circular cross section.
Then with eq (1), the steady-state nucleation rate is

Ag*

- o AH*  32¢%, T,
La=1 “P< lcT)‘”‘p< T?(Ah,)?(AT)%T)’ ©)

[(AT)"? law]

where we have set

DB o

Here Ak, is the heat of fusion per unit volume of
crystal at the equilibrium melting temperature,
T,, and (A7) the degree of supercooling, 7,7,
where 7' is the crystallization temperature. It has
been shown in a previous study [23] that eq (7) is a
good approximation in a glass-forming system.®

Region B (nonsteady state nucleation): Observe
from the foregoing that a*=b*=4q¢/(Af). From this
expression and eq (7) it is clear that at some high
degree of supercooling (large A7), the a and b
dimensions of a nucleus of eritical size will approach
their minimal values, @pi, and by, This will oceur
at a temperature 7', corresponding to a degree of
supercooling of approximately

ATcg4UTm/(AhI)a’min- (8)

As a rough approximation the product (¢mmbmm)
may be taken as the area corresponding to a nucleus
with a cross section containing roughly 5 to 7
polymer segments, i.e., a body with at least one
central molecule in an ordered environment. This
is the smallest object that may be considered as a
typical nucleus. (Note that @ni, will be somewhat
larger than the corresponding dimensions of the
unit cell.)

Because AT, depends on the well-defined lateral
surface free energy o, for which numerical values can
be estimated with reasonable accuracy, a fairly
reliable conception of its magnitude can be obtained.
Taking o=5 erg em™? Auin="bmmn=10X10"°% cm,
T,=400 °K, and (Ah;)=10° erg em 2, AT, calculated
from eq (12) comes to 80 °C. AT, should rarely be
less than 30 or 40 °C, and in many cases it may be so
large that it falls near or below the glass transition,
which would render it inherently unobservable.

It is clear that the nucleation rate will change its
character near and below 7. Attention is now

§ The usual expression Af=Ahs(AT)/T»is less exact than eq (7) for glass-forming
bulk systems. The extra factor T/ T, corrects for the fact that the entropy differ-
ence between the supercooled liquid and crystal falls below Ahs/ T as the temper-
ature falls below 7.

directed to the interesting question of the nature of
the nucleation process in the temperature region
near and below 7, region B.
At and below T, the free energy of formation may

be written
A¢:2am1nbmlu0e+l[2amln0'+2bmlno'_amlubmin(Af) ] . (9)
The coefficient of /is zero at 7, but becomes negative
at lower temperatures. Thus, it is seen that the
nucleus is formed by “increasing’ its length [ to its
minimum possible dimension, which we call /[y,.
Hence, in effect, we are calculating the steady-state
nucleation rate for a nucleus of fixed dimensions
@min, Ominy lmin. The modification of classical con-
tinuum free energy surface theory necessary to deal
with this type of problem is mentioned in section 3.1.
The appropriate free energy of formation is given by
eq (9) with I=l,,. The steady state nucleation
rate in region B is

AH*+AH**
A R CE
amlnbmlnlmln(Ahf) (AT)
Xexp [ T (10)

[(AT)*! law; will not be directly observable]

where the constant term 20, (Gminoetlume) 18
denoted as AIT**,  (Ordinarily, AH** will not exceed
several kcal mole™.) This (AT)*' steady state
nucleation rate expression appears to be new in
nucleation and growth theory. It must immediately
be pointed out, however, that it is very unlikely
that such a rate law would be observed over any
substantial range of temperature because of the
effect of nonsteady-state nucleation near and below
T, 1In the case of such small nuclei forming by
steady state nucleation in a strongly supercooled
polymer, the additional effect of pre-existing embryos
of minimal size must be taken into account.’

At any temperature 7 above the melting point
of the polymer, the free energy of formation of an
embryo always increases as its size increases. This
is in contrast to the case of embryos in the super-
cooled liquid state, where the free energy of forma-
tion goes through a maximum at a saddle point
so that embryos can become nuclei, and eventu-
ally stable crystallites. Nevertheless, numerous
small embryos will exist in the normal liquid
above 7, and the population of such embryos
can be estimated by straightforward methods. (In
the expression for A¢, AT simply changes sign above
T,.) Now when a polymer specimen is rapidly
cooled from a temperature 7' that is above 77, to a
temperature 7, in the strongly supercooled state,
a number of these pre-existing embryos will be found
to be of the critical size relevant to 75. The number

9 Even if the nonsteady state nucleation effect did not interfere at strong super-
cooling, the (AT)*! law would not be closely obeyed near 7'. because of disturb-
ances in the nucleation rate related to the segmental character of the chain that
will occur as ! approaches Iminu.
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of such pre-existing embryos that correspond to
nuclei of critical size will be negligible if the stable
nuclei are large, as will be the case at low or moder-
ate supercooling, but near and below 7, where the
nuclei are of the minimal dimensions @mpm, bOmm,
i, the number of pre-existing embryos that corre-
spond to nuclei of ecritical size will be high. Thus,
near and below 7', this transport of bundlelike
embryos from the normal melt to the strongly super-
cooled state will greatly increase the rate of injection
of nuclei above that predicted by eq (10), or eq (6)
as extrapolated into region B. Calculations show
that this effect might become so pronounced some-
what below 7, as to cause a very rapid and fine-
grained crystallization to occur that might aptly be
described as a ‘“nucleative collapse” of the super-
cooled liquid state. (This effect may deter glass
formation as noted in section 8.2.)

At sufficiently low temperatures, the rate of
injection will eventually fall because of the increasing
importance of the interfacial jump rate term,
exp (—AH*/kT). Depending on the values of A/T*

and the various surface free energies involved, this |

could happen in regions A or B.

Summary: The overall picture of the homo-
geneous nucleation rate for bundlelike nuclei is shown
in figure 2a. The interfacial jump rate term,
exp (—AH*/kT), with its positive temperature co-
efficient, will commonly overcome the strongly
negative temperature coefficient of the nucleation

(a) PRIMARY BUNDLELIKE NUCLEI

log 1

(b) PRIMARY NUCLEI WITH CHAIN FOLDS
..... ...

log T

Tm
TEMPERAT URE

Rate of injection of homogeneous nuclez as a function
of temperature.

I is the homogeneous nucleation rate in nuclei per second per unit vol-
ume. — — — — behavior of steady state value of log I if effect of jump rate is
small; customary behavior where jump rate lowers log I; . . . . . shows
nucleation in excess of steady state value of log Iin region B resulting from trans-
port of nuclei of minimal size from above T'm.

Ficure 2.

term, exp [—320%0, 77,/ T?(Ah,)?(AT)*hT], and cause a
maximum to appear in the steady state nucleation
rate in region A (see solid line). If the nucleation
rate is still observable at all at and below 7, the
excess nucleation rate characteristic of nonsteady
state nucleation in region B may be seen.

2.4. Primary Nuclei With Chain Folds

Quantities that are closely related or specific to
chain_ folds are denoted by bold face symbols. Note
especially that

folded nuclei[o,=end surface free enerqy
or crystals|o=lateral surface free enerqy

The corresponding quantities for bundlelike systems
are

bundlelike
N oe=end surface free enerqy
nuclei or a=lateral surface free energ,
crystals ' ejree energy.

The specific type of folded nucleus to be discussed
is shown in figure 1b.

Lateral Surface Free Energy (Folded Crystals): The
lateral surface free energy o for the folded nucleus
refers to an abrupt phase boundary, since no polymer
molecules pass through this surface and connect the
supercooled liquid and ecrystalline phases. The
quantity o is thus similar in general character to the
quantity o for the bundlelike system, i.e., r~0o, and
eq (2) applies to its estimation. Thus, ¢ will usually
fall between 5 and 25 erg cm™2

End Surface Free Fnergy (Folded Crystals): The
end of the chain folded nucleus, unlike the end of
the bundlelike nucleus, has a well defined phase
boundary. Hence, the folded nucleus has abrupt
phase boundaries on all its faces.  As a consequence,
the treatment of chain folded nuclei can be ap-
proached with more certainty than can bundlelike
nuclei under like circumstances. Both o and e,
may to a good approximation be assumed to be
independent of temperature and other variables.

The value of the surface free energy o, for a
folded nucleus is related to the work required to
form a fold [3]:

682630+q/2f10. (11)
Here q is the work required to form a fold, and A,
is the area of the cross section of the polymer mole-
cule. An important contribution to g will arise from
the internal rotational potential of atoms or groups
of the loop itself, i.c., from the stiffness of the polymer
chain. Then values of q in the range of roughly
1 to 10 keal per mole of loops are to be expected.
For molecules with the cross-sectional area ordinarily
encountered, say 20>X107'% c¢m? this means that
q/24, might be expected to run from roughly 15 to
150 erg cm™2 (1 kecal/mole of folds=6.95% 101
ergs/fold.) The quantity e, is the contribution of
g, due to factors other than folding, and is probably
not in excess of . Thus we might expect o, to be
somewhere from 15 to 40 erg em™ to roughly 150
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to 175 erg em~2 for chains of normal flexibility and
cross section. It is to be expected that o, will
generally be larger than o in any specific case.

2.5. Rate of Homogeneous Nucleation With Chain
Folds

Region A: By simply replacing ¢, and ¢ in eq (4)
with o, and o, and proceeding as before, we get

e | ( éf]j) (_ 32 o’a, T,
ATR P T ) P\ T AR AT) T
[(AT)~2 law]

(12)

for the steady state rate of injection of loop type
nuclei in bulk.

The auxiliary equation

13=40./(Af) =240, T,/(ARs)(AT) (13)
which defines the length or “step height” of the
primary nucleus, is obtained in the derivation of
eq (12). A numerical calculation using the esti-
mated values of o, and reasonable values of the
other parameters in eq (13), reveals that the step
height of the primary nucleus should frequently lie
between 100 and 500 A for a degree of supercooling
of 20° C. (As will be noted subsequently, the step
height of chain folded lamellae growing by mono-
molecular accretion may initially be substantially
less than that given by eq (13).) Observe from
eq (13) that the step height of the primary nucleus
increases as the degree of supercooling decreases.

The derivation of eqs (12) and (13) is based on the
idea that the primary nucleus is large, i.e., the
critical size is reached after many successive steps.
Therefore, the free energy surface may be treated
as a continuum. As will be seen in section 5.1, this
assumption cannot be used for monomolecular
growth with chain folds. For the Jatter, a different
theory of the rate of nucleation and step height will
be given.

Important restrictions exist on the path of nuclea-
tion on the free energy surface for loop type nuclei
that are not evident in the simplified derivation
indicated above. In particular, the step height of
the primary nucleus, I, may be regarded as essen-
tially invariant as the nucleus is built up. The
theory for the constancy of the step height of loop
type primary nuclei has been given in detail else-
where [3]. The step height of one primary nucleus
as compared with another is restricted to a narrow
range of values centering about I} because of the
steepness of the sides of the saddle point in the free
energy surface, and the fact that the chain folds
prevent (or seriously deter) an increase of length
after a loop is Jaid down.”> This type of restriction
does not apply to bundlelike nuclei.

10 In reference [3], it was shown in eqs (42-48) that the homogeneous nucleation
rate for folded nuclei between the length 1and 14-dl is proportional to exp (—AH*/
kT)exp (—A¢*/kT)exp { —(As*/kT) [(115—1)2}/[142 (1/15—1)]}, where A¢* is the
free energy of formation at the saddle point, which is 32¢%./(Af)2 in the present
geometry. This expression shows that the nucleation rate is a maximum at
1=1;. This was extended to show that primary nuclei with step heights much
different than 1} are highly improbable.

Effect of Molecular Weight on Nucleation in
Upper Part of Region A: The critical volume of the
primary folded nucleus, v*, is a*b*l5=64 o’c,/(Af)°
~646%c, 13 /(AR (AT)®. For the parameters =35
erg em~2, ¢,=25 erg em~>, 71,=400 °K, and (Ak,)
=10° erg ecm™® this comes to 2.6 X107%/(AT)? cm?.
At relatively low supercooling, e.g., (AT)=10 °C,
this would give v*=2.6><10"* cm® If it is now
assumed that the average length of the polymer
molecules, /,, is 5000 A, and that the cross-sectional
area is 20> 107'% ¢m, the mean volume per molecule
is calculated to be 107 em® molecule™. In this
case, the nucleus would have to be formed from
more than one polymer molecule. If the polymer
molecule has large chain ends that are excluded
from the crystal, it follows that the folded nucleus
will occasionally possess a chain that emanates
bundle-fashion from the plane of the chain folds.
This leads to no serious limitation on the theory of
nucleation as presented above. At AT'>14 °C, the
primary nuecleus could form from one molecule.

If the chain ends are so large as to be practically

-completely excluded from the crystal, a serious

limitation on the ability of the polymer to form a
primary nucleus with chain folds will occur as the
step height approaches one half the length of the
molecule. For the parameters cited above,
I5=4000A/(AT) and [,=5000 A. Then when
AT<1.6 °C, chain folded primary nueclei cannot
form if chain ends are excluded from the crystal.
For materials with higher o, values or lower molec-
ular weight, this limitation will appear further below
T,. For example, with ¢,=50 erg em= and [,
=2000 A, this limitation would appear at AT<S8 °C.
This means that simple homogeneous nucleation
with chain folds will not be possible very near the
melting point if chain ends are strictly excluded
from the crystal. (The same is of course true for
bundlelike nucleation at some low supercooling if
chain ends are excluded from the crystals.) For
polymers of high molecular weight, this limitation
on folding is not apt to be encountered in the region
where the rate is commonly observed.

It will be possible to tolerate a certain concentra-
tion of small chain ends as defects in a polymer
crystal. In this case, the degree of supercooling at
which chain folds would have difficulty in forming
because of chain end effects would be substantially
smaller than indicated above. Also, a number of
short chains may be included bundle fashion in the
nucleus.

Region B: The expression given for I, will hold
from temperatures near 7,, on down to considerably
lower temperatures. Then there will be an increase
in the rate of injection of loop type nuclei at a degree
of supercooling A7, =46 7,,/(Al;)an;, resulting from
the transport of pre-existing loop type embryos,
resembling U shaped kinks, from the melt to the
supercooled state. The argument for the existence
of this nonsteady state nucleation effect is similar
to that given previously for bundlelike nuclei, and
need not be repeated here.

Note that the expressions for AT, for the bundle-
like nucleus and the loop type nucleus are similar,
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and involve only the lateral surface free energy.
The type of nucleus of minimal dimensions that will
actually be deposited near and below T, will be the
one that has the lowest free energy of formation,
and this will depend largely on which has the lowest
end surface free energy. The same symbol is used
to denote the transition temperature for both types
of nuclei, since it is generally clear which kind is
meant.

Summary: A schematic diagram of the rate of
homogeneous injection of folded nuclei as a function
of temperature is shown in figure 2b.  The solid line
indicates the manner in which the interfacial jump
rate term exp (—AH*/kT) will generally lower the
nucleation rate at some degree of supercooling,
causing a maximum to appear in Ia. (This maxi-
mum would ordinarily appear between 0.8 to 0.9
T,.) It is probable that the A—B transition will
frequently be unobservable because the jump rate
term lowers the nucleation rate so much that 77, falls
near or below the glass transition. The pip mark
just below 7, represents the temperature above
which the molecular length is too small to accom-
modate chain folding if large chain ends are excluded
from the erystal.

2.6. Bundlelike Versus Folded Nuclei in Bulk

As will be brought out subsequently, there are
substantial reasons for believing that lamellar
spherulites formed in bulk are composed of crystals
with chain folds, each individual lamella having a
thickness corresponding to the step height associated
with the chain folds. The intriguing question of how
folded structures could nucleate and then propagate
in linear polymers crystallized in bulk will now be
discussed in the light of what may be said about
homogeneous nucleation in the bundlelike and folded
patterns, the possibility that heterogeneous nuclea-
tion may be involved in the initiation act, and the
fact that under certain conditions chain ends or
strain may interfere with the formation of large bun-
dle like objects, even under conditions where small
bundlelike nuclei are formed easily.

Consider first the problem of how folded nuclei
might predominate in bulk crystallization on the
assumption that the folded structures that are observed
are of homogeneous origin. (This assumption is by
no means proved in any case of bulk crystallization
known to the author, but serves as a convenient
starting point for the discussion.) We will deal
only with crystallization near the melting point.

There is no difficulty in explaining why crystals
with chain folds are deposited from a sufficiently
dilute solution of a linear polymer. Lauritzen and
Hoffman [3] have discussed this in terms of the
rate of injection of bundle and loop type nuclei in
solution which are *!

7 T A[I*) ) < 32 o%,
bunale=49 €XP T exp T

16 o*log, v,
Ao(8f)*

11 The derivation of eq (14) is patterned after one given by Mandelkern [24]
for a eylindrical bundlelike nucleus.

X exp (14)

AH* 32 oo,
Iloop:IO exp <—k—T) exp (—ﬁw (15)

(dilute solution)

Equation (14) has been recast to accord with the
particular notation and geometry used in the present
paper. (The parameters o, o,, lo, AH*, and (Af)
might have somewhat different values in dilute solu-
tion than in the bulk phase.) The quantity », is the
volume fraction of polymer. The lateral surface free
energy for the bundlelike nucleus in solution will be
essentially the same as the lateral surface free energy
of the loop type nucleus in solution, i.e., s>~a. The
end surface free energies o, and o, will differ to a
significant extent.

The important point to note in comparing these
two expressions is that, independent of the values of
o, and o, that are chosen, I, will always exceed
Lyunare of s is taken to be sufficiently small, since the
exponent in eq (1) containing log, v, will be a large
negatiwe number under these conditions. Numerical
estimates given in an earlier paper indicate that even
if o, is taken to be considerably smaller than o,
folded nuclei will predominate at concentrations of
less than about 1 to 10 percent. The term in eq (14)
involving log, v, results from the fact that a number
of different polymer molecules must be gathered
together to form a bundlelike nucleus, whereas only
a few polymer molecules (and often a single one)
can form a loop type primary nucleus. Therefore,
there is a large configurational entropy contribution
to the formation of a bundlelike nucleus in dilute
solution that does not arise in the case of the loop
nucleus.’? In the case where o, is larger than o,
folded nuclei will predominate across the entire con-
centration range (see below).

For this same basic reason, a folded crystal is more
stable in sufficiently dilute solution than a bundle-
like one of the same size and shape even if ¢, is smaller
than o,. Specifically, it can be shown [3] that the
total end surface free energy per unit area for the
two types of crystal may be written as ?

Oend bundle (tot.) =0 (ICT/QAO) loge %) (16)

(17)

The term in eq (16) containing log, », arises from
the configurational entropy effect mentioned earlier.
Thus, even for the case ¢,< 6, Tenq bundte (tot.y Will ex-
ceed Geng 100p (101 ab some low concentration of poly-
mer, and the folded crystal will be the most stable
type in dilute solution because it has less total surface
free energy. In the event o, >a,, the folded crystal
would be the most stable type across the entire
concentration range when compared with a bundle-
like crystal of the same size and shape.

We are thus led to a discussion of the relative
homogeneous injection rates for bundle and loop type

and
Oend loop (tot.) = T e

. 12 The expressions for Ijoop and oend loop (tot) do in fact contain a small term
in loge 2, but this is entirely insignificant compared to the ones shown for It yndie
and oend bundle (tot.) [3]
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nuclei in bulk polymers. The appropriate compari-
son is given by eq (15) in the case of loop nuclei,
and by eq (14) with »,—1 for bundlelike nuclei (¢f.
eqs (6) and (12)):

AHT* 32020,
Trunale=1o exp <—‘“k—T) exp <—- (KJ%Z,Z—T> (18)

320’0, >

“apwr)

AH*
Ioop=I, exp <—-—IC—T—> exp
(bulk phase)

Anywhere near the melting point, the exponents
involving the surface free energies in these two ex-
pressions are by far the largest and most temperature
dependent. Recall also that o is essentially the same
as o for the two types of nuclei. It follows that if
homogeneous nucleation of folded nuclei is to prevail
over any sensible temperature range in the bulk phase,
the condition o, >a, must exist.

While the condition o, >a, for homogeneous nuclei
would lead to the dominance of folded nuclei (and
the resultant chain folded lamellar structures) in bulk
polymers, this is not necessarily the only condition
that can lead to a significant number of such struc-
tures in bulk. Other factors must be taken into
account. For example, chain ends may in some
instances prevent the formation of large bundlelike
objects, as Flory’s theory [22] suggests. (Cumulative
strain may have a similar effect.) Also, hetero-
geneous initiation, which is certainly a very common
source of spherulite initiation, must be considered.
However, before discussing these points it is worth
commenting on the important case o, >o.. )

Conditions giwing o, >o, (chain folding the basic
mode of nucleation and growth in bulk): 1t has been
shown for a bundlelike nucleus with a flat end and
noncumulative strain that the minimum value of o,
is given by ls(Ah,)p./6p:, where [, is the ‘length of the
part of the bundle end where the density falls from
the crystal to the supercooled liquid value (see eq
(A-20) in the appendix). Further, it was estimated
in section 2.2 for the particular case of polyethylene
that o, mum was in the vicinity of 60 erg em™* on the
basis of the assumption /;,=10 A. An analysis of o,
for folded polyethylene crystals based on data on
single crystals formed in dilute solution due to Keller
and O’Connor [1] suggests that o, is probably be-
tween 30 and 75 erg em 2 [3]. More recently, a value
in the vicinity of 100 erg cm™* has been suggested
[41]. (Although these figures apply to folded crystals
formed in dilute solution, the o, value relevant to
folded crystals formed in bulk should not differ
greatly from that appropriate to dilute solution.)
Thus, while it is not altogether certain that o,umuw) 18
larger than e,, it is clear for the particular model
used that o, for the bundlelike nucleus can readily
exceed o,mn=060 erg ¢cm~% since I' will generally
exceed zero. With this considered, o, could easily
be as high as several hundred erg cm™. Therefore,
the possibility that ¢, >, for polyethylene would
appear to exist.

Before drawing any conclusions from the above,
several points must be made clear: (1) The value of
Tominy =00 erg em~? is admittedly based on the as-
sumption /,—10 A. However, it is believed that
this 1s if anything an underestimate, s0 ¢,qm, for the
flat bundle end model without cumulative strain is
probably even larger than the value cited. (2) The
expression o, i —Lls(Ahs)p,/6p; depends on the as-
sumptions used in the simplified model for the heat
content and entropy as a function of density in the
bundle ends. For example, a narrower maximum in
AH (p) would lead to a lower value of ¢,mmimy. Never-
theless, the estimate given for o, is probably not
significantly high on this account, and may be too
low. (3) Cumulative strain at the flat bundle ends
resulting from the density difference between the
“connected” liquid and crystalline phases has been
omitted from the calculations. However, this will
in general lead ¢, to be underestimated. As will be
seen subsequently in the discussion of the hypo-
thetical bundlelike “lamellar” structure, cumulative
strain will occur at flat bundle ends of large extent,
especially in the case where the chain axes are per-
pendicular to the plane of the bundle ends. Crudely,
one can think of such strain as greatly increasing I' in
eq (3), causing o, to attain values far in excess of
Gominy- We regard that it is quite certain that o, >o,
for large nuclei with polymer chains that are per-
pendicular to flat end surfaces on account of cumula-
tive strain alone. (4) The cumulative strain in the
flat bundle end model may be reduced by allowing
the chains in the (still flat) surface phase to subtend
a certain angle ¢ with respect to those in the crystal
itself (see section 4.3). (This is related to the fact
that the end surface of a bundlelike crystal will tend
to be curved in order to minimize the surface energy,
as pointed out by Matsuoka and Maxwell [25], and
Frank [26].) Estimates obtained using appropriate
variations of the model treated in the appendix sug-
gest that o, will be fairly large for the “tilted,” model
even if the cumulative strain is completely removed.
The bending of the chains at a nontetrahedral angle,
and the abnormal separation of the chains at the
boundary nearest the crystal, produce the required
contributions to the heat content in the surface
phase.

With the above remarks in mind, it seems reason-
able to suppose that it is entirely possible that
o, >0, for polyethylene for the important case of
flat end surfaces. This would lead in a natural
way to a predominance chain folded nuclei in bulk
in this polymer, as opposed to bundlelike nuclei
with flat ends. From this illustrative example,
we consider that it is at least not nonsense to propose
that o, may exceed o, in some linear polymers.

The free energy of formation of a bundlelike
nucleus with curved ends (“ellipsoidal” model)
has not been explicitly considered here. This would
probably require the use of considerations akin to
those proposed by Cahn and Hilliard [27] for homo-
geneous nucleation in systems with density gradients.
This model is not considered revelant to the problem
of the nucleation and growth of bundlelike ‘“lamellae’”
with large flat end surfaces. Thus, while it seems
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reasonable on the basis of our calculations to suppose
that in some cases ¢, >0, for nuclei with flat ends, no
such simple calculations will provide as much infor-
mation on whether or not the free energy of for-
mation in bulk of a folded nucleus (which of course
has flat ends) is less than that of an ellipsoidal
bundlelike nucleus under similar conditions. Never-
theless, our surmise would be that the necessity of
having the chain molecules go through a density
gradient in the ellipsoidal bundlelike case might
well be able to increase its free energy of formation
to the point that folded primary nuclei are still
the favored type in the bulk phase. This is not
certain, however, and the possibility therefore
exists that ellipsoidal bundlelike nucler may form
more readily at a specified supercooling than folded
nuclei, even when folded nuclei are preferred to
bundlelike nuclei with flat end faces. However,
if strain or chain ends limited bundlelike growth,
the macroscopically observable crystals would still
be of the folded type even though coexisting with
a number of bundlelike microcrystals or embryos
(see below).

Possibility of chain folds in case o,<a,: We now
mention certain conditions that might lead to the
appearance of a considerable amount of chain
folded material in a bulk polymer even in the case
where o,< o, for primary nuclei.

Consider the effect of chain ends on the formation
of the two types of nuclei (or crystals) under dis-
cussion, namely the bundlelike and the folded.
We deal principally with the case where the chain
ends are assumed to be sufficiently large so that
the majority cannot enter the crystal.

It is reasonable to ignore the effect of even large
chain ends in constructing the expression for the
free energy of formation of relatively small bundle-
like nucler of a polymer of high molecular weight.
However, this is not the case for bundlelike c¢rys-
tallites where large chain ends are excluded. Flory
has clearly indicated for this case that there are
restrictions of an equilibrium character on the size
of the bundlelike polymer crystals [22]. The
restriction discussed explicitly in Flory’s paper refers
to a limitation on the mean length of the crystallites.
Flory’s theory of bundlelike ecrystallization also
implies a limitation on the mean radius of the crys-
tallites. The net result is that a large number of
bundlelike microcrystals of varying sizes is pre-
dicted to exist in a polymer with a distribution of
molecular weight. The restriction on the ultimate
(equilibrium) size of bundlelike crystallites must be
given consideration in dealing with the formation of
large nuclei, and the growth of crystallites, in the
bundlelike pattern. The description of bundlelike
microcrystallinity just mentioned does not appear to
suggest the existence of large numbers of lamellae of
uniform thickness and extended ‘‘radial’” dimen-
sions of the type seen in lamellar spherulites.

Even the assumption that chain ends are totally
excluded from the ecrystal will not cause folded
nuclei or thin folded crystals to fail to grow to large
dimensions in the ‘‘radial” direction, i.e., in the
direction normal to the polymer chain axes. (Once

formed, a folded crystal will grow slowly, if at all,
in the chain axis direction because of the existence
of the folds, and the slowness of the requisite internal
“lengthwise” diffusion mechanism.) A chain end
can readily be “denucleated’” the short distance to
the plane of the chain folds when it finds itself on
the lateral (growing) surface, thus being rapidly
and efficiently excluded from the interior of the
folded crystal. Such chain ends would protrude
outward from the fold plane on a short section of
polymer chain.

Thus, thin chain folded crystals, once nucleated,
should be able to grow to large “radial” dimensions,
corresponding to a certain fraction or even the entire
radius of a spherulite. The main limitation would
arise with low molecular weight material where the
molecular length was less than twice the step height,
but all molecules that were significantly longer than
this would be potentially crystallizable in a basically
chain folded manner. Some of the chains (including
rather short ones) may be included bundle fashion
in the otherwise folded crystal.

The concept that chain ends are excluded from
polymer crystals must not be pressed too far, espe-
cially in the case of small chain ends. A substantial
number of sufficiently small chain ends may enter
chain type crystals. (This evidently applies in the
case of the —CH; end groups in the solid solutions
formed by the n-paraffins of different lengths.) In
the case where a certain number per unit volume
of such ends can be assimilated by the polymer
crystal, the restrictions noted in Flory’s theory on
the size of bundlelike erystals would be relaxed, i.e.,
larger crystallites would form. Similarly, any restric-
tions on the ultimate size of the step height due to
finite molecular length would be minimized, as noted
earlier in section 2.5.

The radial growth of bundlelike nuclei may be
significantly reduced or even stopped by cumulative
strain at the bundle ends resulting from the density
difference of the liquid and crystalline phases. As
mentioned earlier, this will certainly be the case for
bundlelike nuclei with flat ends where the chain
axes are perpendicular to the end face. This may
possibly even occur for ellipsoidal bundlelike nuclet,
or bundlelike nuclei with flat ends where the chain
axes are inclined at an angle to the end surface. 1In
such situations, the condition o,< e, might exist for
small nueclei or very small erystals, while cumulative
strain leads to o, >, for large nuclei or crystals.
Homogeneous nucleation of tiny bundlelike nuclei
would then prevail over the folded type, but the
crystals apparent on a large scale in the system
would be formed on a basically chain folded pattern.

Even in the case where ¢,< o, for small nuclei, and
o, >0, for large nuclei, the rate of homogeneous
nucleation of lamellar spherulites with chain folds
will be given approximately by eq (19), especially
at moderate to low supercooling where the nuclei
will be rather large. The nucleus, though starting
on the bundlelike pattern, would begin folding as it
grew and exhibit the overall energetics characteristic
of a folded nucleus. At high supercooling, stable
bundlelike nuclei would appear in profusion, though
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folding would occur as these grew to large size. In
this region, the apparent homogeneous injection rate
of folded objects would inecrease above that given
by eq (19). This effect may strongly resemble the
onset of region B.

The above remarks form the basis of the concep-
tion that even if o,< @, for small nuclei, chain folded
structures may under certain circumstances be the
most prevalent and physically obvious form of bulk
crystallization in linear polymers.  Specifically,
cumulative strain or sufficiently large chain ends
may poison the coherent growth of bundlelike crystals
to large dimensions, causing any strictly bundlelike
crystals that were initiated to be of limited size:
then any folded structures that were introduced into
the system through the agency of either homogene-
ous or heterogeneous nucleation might be able to
grow to very large size in the two dimensions normal
to the chain axes in the same general sense that
folded single crystals do in dilute solution. In this
case, 1t is important to distinguish between the
prevalence and ease of observation of a certain type
of crystal on the one hand, and the rate of homogene-
ous initiation of small nuclei of limited growth
potential on the other. For the case where ¢, >0,
for nuclei, the formation of folded structures will
dominate the bulk crystallization process.

The remaining point concerning the origin of
nuclei deals with the possibility of heterogeneous
nucleation. In real polymer systems, the initiation
of spherulites is for the most part of pseudohomo-
geneous or heterogeneous origin. (Pseudohomo-
geneous initiation, which refers to the essentially
sporadic initiation events that may take place on the
flat surfaces of weakly wettable heterogeneities, can
imitate the truly sporadic initiation characteristic of
homogeneous initiation.) As a result of special
interactions, heterogeneities might conceivably have
a strong predilection for producing structures con-
taining loops on their surfaces, even if ¢,< o, for
the homogeneous process. This might cause chain
folded structures to be prevalent in linear polymers
crystallized in bulk. In the case where o, >a,,
chain folded structures of heterogeneous or pseudo-
homogeneous origin would arise in numbers far in
excessof that characteristicof homogeneousnucleation
if suitable heterogeneities were present, and these
structures would certainly be the dominant form
present. Certain questions relating to homogeneous,
pseudohomogeneous, and heterogeneous nucleation
will be discussed subsequently in section 8.

Summazry: The following conclusions may be drawn.
If folded nuclei are to predominate in the super-
cooled bulk phase of a polymer on a homogeneous
basis over any important range of temperature, the
end surface free energy of the bundlelike nucleus
must for some reason exceed that of a folded nucleus
(00>0,). (This statement refers specifically to
nuclei with flat end surfaces.) Because of a certain
flexibility in the parameters that define ¢, and o,
it is not possible to say a priori that homogeneous
formation of folded nuclei should dominate the bulk
nucleation mechanism. However, a plausible case
can be made for supposing that ¢, might well exceed

o, under certain circumstances. In any event, the
quantity o, 1s evidently considerably larger than has
been assumed in the past. (A compelling theoretical
case can be made for the dominance of folded nuclei
of homogeneous origin in sufficiently dilute solution.)
In the case of heterogeneous nucleation under the
condition ¢, >0, folded structures are to be expected.
It is probably not absolutely necessary that ¢, always
be greater than o, to have a significant amount of
folded structures appear in bulk. Sufficiently large
chain ends may poison the formation of large bundle-
like crystallites, but at the same time not seriously
affect the formation of large chain folded objects.
Similarly, cumulative strain may abort the growth of
bundlelike erystals; this corresponds to o,< o, for
small bundlelike nuclel and o, >a, for large bundle-
like nuclei or crystals. Further, heterogeneities, a
common source of spherulite initiation, might
induce folded surface nuclei by specialized inter-
actions.

Attention is now directed to the main problem of
the rate of radial growth of spherulites, and the
connection between the proposed mechanisms and
spherulite structure.

% 3. Rate of Radial Growth of Spherulites:
Preliminary Considerations

3.1. The Two Types of Nucleation Problem in
Spherulitic Growth

We will repeatedly encounter two types of nuclea-
tion problem in connection with the rate of radial
growth of a spherulite. The first of these is quite
similar to that already treated for primary nuclei in
the previous sections, in that it deals with a nucleus
that is built up, step by step, until a critical size is
finally reached. Nucleation of this type has already
been treated by Turnbull and Fisher [18], and is
readily adapted to deal with surface nuclei that are
gradually built up to eritical size in a stepwise manner.
The second type of nucleation problem commonly
encountered is that where the maximum in the free
energy barrier is reached in a single step, rather than
in a large number of steps. This problem often
arises when nucleation of a monomolecular layer is
considered. The problem of monomolecular layer
growth has been considered by Lauritzen and
Hoffman [3].

If the surface nucleus is built up by successive
addition of a large number of elements until a
nucleus of critical size is reached, the free energy of
formation may be represented as in ficure 3a. Each
elementary forward reaction has a reaction rate of
the form (kT/h) exp (—w;/kT), and each backward
reaction a rate of the form (k7/h) exp (—w,/kT).
Then by summing over all the forward and backward
reactions in the manner described by Turnbull and
Fisher, it is found that the overall rate of nucleation
per unit area of substrate is

e¥p< ady s

Is:Is(o) exp ( (20)
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where AZ™* is the free energy of activation of the
interfacial jump rate, A¢¥ the work required to build
a nucleus of critical size, and 7, a factor that does
not depend strongly on temperature. As before, the
term in AF™ may be broken up to give AH*— TAS*,
The quantity A¢* is, in w‘noral calculated in a
manner similar to that used pl(\vmuely for primary
nuclei, i.e., the free energy surface is treated as a
continuum. Each nucleus then rapidly grows across
the substrate crystal and produces a new layer, or
substantial fraction thereof. A new surface nucleus
will then form on this new layer. Accordingly, the
rate of growth on this crystal face depends on the
rate of nucleation on the face. When the crystal
face in question corresponds to that leading to
radial growth of the spherulite the steady state rate
of radial growth may be written
&
%)- 1)

exp <——

(large surface nuclei built up step by step; A¢*
calculated from continuum model of free energy
surface)

SE]
G=dr/dt—Gy exp <_%€L;_

Here G is a constant with the dimensions /¢~ » the
radius of the spherulite at time . The quantity G,
contains the factor exp (AS*/k), and certain rela-
tively unimportant geometrical factors. The princi-
pal problem connected with calculating the radial
growth rate for a model is the evaluation of Ag*.
As in the case of homogeneous nucleation, A¢* is the
free energy at the saddle point described by the ap-
propriate free energy function.

At low to moderate supercooling, the main tem-
perature dependence in eq (21) is due to the A¢*
term, the term in A/H* being next in importance.
The temperature dependence of Gy 1s negligible in
comparison.” For steady state surface nuc g ation,
the term in A¢* always has a negative t(-mpcraturc
coefficient. The term in AH* has the usual positive
temperature coefficient.

The problem takes on a somewhat different char-
acter in cases where the activated state is reached
in one step (fig. 3b). Although from a formal stand-
point the free energy surface in question may have
a saddle point, it is not correct to treat the free
energy of formation A¢ as a continuous function of
the width @ of the nucleus when the activated state
is reached at a=a, Then A¢ is defined only for
discrete values of @. The net rate is maximized
when the length of the step element has a critical
length *, the nucleus being formed by passage over
part of the barrier ridge which is not necessarily at
the saddle point in the free energy surface treated
as a continuum. For this problem, a summing of
all the forward and backward reactions leads to a
nucleation rate per unit area of surface of the form [3]:

13 The pre-exponential is sometimes written as GoT, apparently in the belief
that the main temperature dependence of the pre-exponential arises from the
factor (k7/h) that applies to the elementary jump rate processes for each indi-
vidual forward and backward reaction. Actually 7 ) contains a factor analo-
gous to K in eq (1) that varies as (AT)-2 for a number of models. Even this
dependence on temperature is negligible in the problems of interest here, and

G0 may be considered to be independent of temperature to a sufficient approxi-
mation.
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Frcure 3. The two types of nucleation problem encountered in
calculating the rate of radial growth of polymer spherulites.

(a) Activated state (*) reached by successive addition of a large number of ele
ments (Turnbull and Fisher, continuum free energy surface model).

(b) Activated state (*) reached in single step, i.e., by the accretion of one ele-
ment of length I*, as in certain cases of mononmleculm layer growth (Lauritzen
and Hoffman, discrete free energy surface model).
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Here Ag¥™V is the free energy function A¢; evaluated
for the case »=1, where » 1s the number of elements
(i.e., the number of chains of eritical length /*) laid
side by side on the crystal substrate, and £ the
incremental increase of stability on adding each new
element (see fig. 3b).

In the case under consideration, the activated
state is reached when one such element of length /*
attaches to the surface. This is what is meant by
the statement that the activated state is reached in
“one step’’; the term “one step” does not refer here
to the elementary process where a single polymer
segment 1s laid down during the process of building
up the length /*. The value of A#™* and AH* relevant
to the interfacial jump rate characteristic of the
laying down of an entire step element of length [*
may be larger than AF%,, and AH%,,, which refer to
the jump rate at the interface for the elementary
segmental processes. The principal contribution to
AF* and AH* probably comes from jump rate proc-
esses at the end of the nucleus, especially in the case
of folded systems.

In most cases of practical interest, the term in
brackets involving sinh (£/2kT) will be sufficiently
independent of temperaturc to be taken into the
pre-exponential. Then by applying the same argu-
ments used earlier, /, may be transformed into an
expression for the radial growth rate of a spherulite:

*(1)
e\{p( Ads ) (23)

(small surface nuclei where activated state is reached
in single step; A¢*™ calculated from discrete free
energy surface model)

G dl"/thGg(]) (‘\p(

It is emphasized that eq (23) frequently applies
in the important case of growth by addition of
monomolecular layers. If eq (21) i1s inadvertently
applied in such instances, misleading or even errone-
ous results may be obtained; it is important not to
confuse A¢¥ (continuum model) with Ag#™® (discrete
model) in calculating the work required to form the
nucleus of critical size.

The calculations of the radial growth rate of
spherulites to be given in this paper refers to experi-
ments where an unoriented polymer is first heated
well above 7', and then rapidly cooled to the growth
temperature. The less readily interpretable experi-
ments where specimens are first quenched from the
melt and then rewarmed to the growth temperature
are discussed briefly in section 8.2.

3.2. The Jump Rate Term in Supercooled Liquids

Another point of interest is that the interfacial
jump rate term may require modification, particu-
larly if it depends strongly on segmental motions in
the supercooled liquid polymer. If such motions
dominate the interfacial jump rate process, it can
be shown that the term exp [—AH*/kT] in the vari-

ous equations that have been given may be replaced
by the empirical expression based on the work of
Williams, Landel, and Ferry [28]

exp [4.12X10°T/RT(51.6+T—T,)Y  (24)
that is valid between 7', and 7',-+100°. Here 7', is
the glass transformation temperature. This is

equivalent to the statement that A/* depends on
temperature, and has the value 4.12>1037%/(51.6 +
T—T,?* For the sake of simplicity, and for the
reason that crystallization temperatures of interest
often lie above 7',+100°, we have not employed this
empirical expression in the body of the paper. Near
the melting point, the constant value AZI*=20,000
cal mole* may be employed for trial purposes.

/)

Ce

(b)

log G
.o

Te Tm
GROWTH TEMPERATURE

The coherent bundlelike surface nucleus model and
its crystal growth rate behavior.

Ficure 4.

(a) Coherent nucleus of length 7, width @, and monomolecular layer thickness
bo on Is]ubstmte crystal. Heavy arrow marked @ indicates direction of crystal |
growth.

(b) The logarithm of growth rate versus temperature, — — — — log G versus 7'
if effect of jump rate is small; behavior where jump rate lowers log G caus-
ing maximum to appear in log G versus 7;. . . . possible effect of interference
with growth by excess nucleation in surrounding medium (cf. fig. 1(a)).
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4. Polymer Crystal Growth by Coherent
Bundlelike Surface Nucleation

4.1. Model

The model used is shown in figure 4a. The
polymer molecules in the nucleus are colinear with
those in the substrate, i.e., the surface nucleus is of
the coherent type. 'The thickness of the surface
nucleus 1s &, corresponding to one molecular layer.™*
Once formed, this nucleus, which has a length / and
width @, leads to the rapid completion of a layer of
thickness b, on some large area of the growing face.
Note that the molecules are oriented at a right angle
to the direction of growth, which is marked “G”.
The lateral surface free energy is o, and the end
surface free energy is o,.

The coherent bundlelike surface nucleus model
(or one of several simple modifications of it) has been
presented at various places in the literature as a
pattern for typical spherulitic growth. However,
calculations on this model should be approached with
full recognition of the fact that it is very improbable
that it will lead to a typical lamellar spherulite.
The relationship of this model to the structure of
spherulites will be discussed shortly. Meanwhile,
we shall treat the model as if it did produce a large
crystgl for which one could define a radial growth
rate G.

4.2. Growth Rate for Bundlelike Coherent Nucleus
Model

A prime will be used to distinguish the quantities
connected with coherent surface nuclei from those
belonging to primary nuclei. Later, a double prime
will be used to denote quantities related to non-
coherent nuclei.

Region A’: In region A’ i.e., from temperatures
near 7, on down to those corresponding to rather
high supercooling, @ and / may be regarded as not
having reached their minimal values, and the free
energy of formation may be written as

A¢:2(Lboo'e+260lo—ab0l(Af). (25)

Notice that no term involving al appears in this
expression: for a strictly coherent nucleus, only the
work required to build the sides enters. By setting
(0A¢/0a); and (0A¢/dl), equal to zero, it is deter-
mined that a*=20/(4f) and I*=2¢,(Af). Then it is
found that

Agr=200e (26)

Since @ and [ are variables, so that the surface
nucleus is not formed in one step, G is to be cal-
culated with eq (21):

14 Note that ao has a different meaning than amin. The quantities ao and bo
refer to the appropriate lateral lattice spacings in the polymer ecrystal, while
@min aNd bmin refer to the minimum values that @ and b may take on in a homo-
geneous nucleus. In general, @min and bmin Wil be larger than ao and bo.

4byoa 17,

Y — G, ox _AEf)V (_
‘”"(’""“’< kT ) P\ T T @k ATk

[(AT)~* law]
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Region B’: The question must now be raised as to
what behavior must be expected of the radial growth
rate at high degrees of supercooling, provided that
the jump rate term has not already caused G to fall
to a low value.

Suppose that the crystals whose radial growth rate
we have discussed were of heterogeneous origin, so
that in region A’ they were born near t=0. Then
at the 7', transition in the supercooled bulk phase, a
vast number of tiny bundlelike nuclei would be in-
jected by the nonsteady state nucleation mechanism
described in section 2.3 into the matrix in which the
crystal was attempting to grow. Thus, at or near
the 7', transition characteristic of the pure bulk
phase, which will take place at AT, ~407,./(Ahy) Gmin,
the radial growth of the older and larger crystals
would be rather abruptly slowed down because of de-
pletion of erystallizable material, and impingements.

If it is assumed that the crystallites are of entirely
homogeneous origin, a rather similar phenomenon can
take place. Here 14, as calculated for a bundlelike
nucleus in section 2 may be regarded as being pro-
portional to the rate of injection. Barring interfer-
ence from the jump rate term, the injection rate
would rather abruptly attain a value considerably in
excess of the extrapolated value of 7,. Such a high
injection rate at and below 7, due to nonsteady
state nucleation would lead to a massive number of
impingements. Any crystallites formed in these cir-
cumstances would tend to be small, and have a signif-
icantly reduced growth rate.

Summary: A schematic diagram of the variation
with temperature of the radial growth rate of a body
that is governed by a coherent bundlelike surface
nucleus is shown in figure 4b. Curves (i) and (i)
in region B’ are intended to represent different
degrees of interference with the growth resulting from
the incursion of a vast number of competing micro-
crystals resulting from nonsteady state nucleation.
The solid line in region A’, which exhibits a maxi-
mum in G because of the effect of the jump rate
term, shows the type of behavior that is most prob-
able if the model 1s valid.

It is considered that the treatment of the secondary
(coherent) bundlelike surface nucleus outlined in sec-
tion 4.2 1s more fully illustrative than that given
previously using the customary pillbox surface nu-
cleus (cf. reference [11]). The pillbox nucleus re-
quires only a single surface free energy that corre-
sponds to our ¢, and leads to a nucleation term
involving ¢%. For a surface nucleus consisting of
chain molecules lying on a flat surface, it seems better
to distinguish between the lateral surfaces, and the
end surface, giving a nucleation term involving the
product ga,. If the growth nucleus were assumed to
form on the end of the bundle, so that the direction
of growth was parallel to the polymer chains, then
the pillbox nucleus with its single lateral surface free
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energy would be justified. However, this model
would not lead to a “spherulite’” where the polymer
chains were normal to the radius.

4.3. Coherent Bundlelike Growth and Spherulite
Structure

Though much attention has been given here and
elsewhere to various coherent bundlelike growth nu-
cleus models, it remains to be seen whether or not
such a growth mechanism would lead to a roughly
spherical object that would be recognized as a
spherulite.  When this is done, it will emerge that
one must have strong reservations about the ability
of the model to reproduce anything resembling a
typical lamellar spherulite.

Suppose that we attempt to construct a single
“lamella’” on the strictly bundlelike pattern of the
type shown in figure 5(a) where the polymer chain
axes are perpendicular to the o, plane. It is simply
not possible to create a large flat surface of the type
commonly seen in lamellar spherulites in this manner
because of the density difference between the super-
cooled liquid and crystalline phases, and the fact that
polymer molecules with covalent bonds connect these
two phases in the bundlelike system of erystallization.
Growth in the “radial”’ direction, @, for such a hypo-
thetical “lamella’” would clearly result in cumulative
strain at the bundle ends. As pointed out by
Matsuoka and Maxwell [25], and Frank [26], the
crystal would actually tend to become ellipsoidal
(see dotted lines in figure 5(a)) in order to minimize
the total surface free energy. If the bundle end
were assumed to remain flat, the effective value of
o, would increase enormously as the crystal grew in
the @, direction, thus aborting its growth.

This effect should become distinetly apparent for
nuclei where the radius corresponds to a mismatch
between the supercooled liquid and crystal of one
molecular diameter. A conservative estimate would
place this radius at less than 50 A under normal cir-
cumstances. The coherent bundlelike growth model

(a) (b)
Ficure 5.

where the polymer chains in the crystal are perpen-
dicular to the hypothetical o, plane is clearly defec-
tive in its ability to predict anything resembling a
typical lamella.

It might be suggested that the cumulative strain
problem discussed above for the perpendicular case
can be minimized by allowing the chains on the faces
of a flat bundlelike lamella to exit from the crystal
at an angle ¢. In such a “lamella”, the chain axes
would thus be tilted with respect to the presumably
flat surface of the end, as shown schematically in
figure 5(b). Theidea is that the chains in the surface
region open up to spacings a,+ Aay and b+ Ab, that
closely corresponds to the mean molecular spacing in
the supercooled liquid polymer. It is not entirely
clear that this would relieve the cumulative strain of
the type that exists in the perpendicular case if the
o, surface must be kept flat. It must be remembered
that the “lamella’” will be three dimensional, i.e.,
both the @ and b spacings in the surface phase must
be larger than a, and b,. It seems likely that the
end surface would tend to become curved. Even
ignoring these effects, it is clear that the work re-
quired to bend the polymer bonds at the required
angle, and to increase the spacings in the surface
phase, will lead to at least a fairly large ¢, value from
noncumulative strain as noted in section 2.6. As
will be demonstrated below, a lamella with a sensible
end surface free energy that is not subject to cumula-
tive strain will not maintain its “step height’’ or
“lamellar’” thickness.

Consider now the relative growth rates in the radial
(r) and lengthwise (/) directions for a bundlelike
crystal of the type illustrated in figures 5(a) and 5(b)
on the assumption that cumulative strain is absent.
The growth in the radial direction has already been
calculated :

G.—@. ex <_@> " <_;4b9‘7”faT3L,,, :
=P TR ) P\ T T4k, ATET
(28)

Hypothetical structure of bundlelike lamellae.

.
. (z}) Isolated lamella with chains perpendicular to flat bundle ends. Light arrows show site of cumulative strain.
lines illustrate how crystal would round off end to reduce strain and total surface free energy.

“h” represents hypothetical step height. Dotted

(b) Isolated lamella with chains tilted with respect to flat bundle end. Cumulative strain is reduced, but “lamella” will grow in both ¢; and @, directions.

(c) Stacks of interconnected bundlelike ‘“lamellae” with tilted chains.
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The corresponding growth rate on the o, faces of the
“lamella’ 1s

4[min02T2

G 1 =G, exp < > 2y < ]'(Ahf)(AT)kT>

(29)

where [, is the length of the coherent surface nu-
cleus that forms on the bundle end. (If cumulative
strain occurred in the bundle ends, both ¢ and o,
would increase rapidly with coherent growth in the
7 and [ directions, and the crystal would not grow to
form a large erystal like a lamella, but would form
instead an ellipsoidal bundlelike microerystal of
limited size as noted in section 7.)

The quantity lnm may be taken as the minimum
length of polymer chain that is crystallizable. It is
impossible to escape the fact that the bundlelike
crystal will grow at a sensible rate on the o, face if
growth on the other surfaces is rapid at the same
supercooling. Even if [, is assumed to be several
times larger than by, it must be remembered that o,
will probably be substantially larger than . Thus
we must expect @; to be roughly comparable to @,
or possibly even considerably larger. In such a case
the bundlelike “lamella’” would not maintain its
hypothetical step height “A” as radial growth pro-
gressed. The above calculation accords with  the
concept that a high energy surface will grow more
rapidly than a low energy one.” It may be con-
cluded that an isolated “lamella” that maintained
its thickness or “step height”” cannot be predicted
with either of the bundlelike models depicted in
figure 5(a) and 5(b).1°

We consider it preferable to consider only theories
of polymer crystal growth capable of predicting the
existence of an isolated lamella in a straight forward

manner. It is then a simple manner to generalize
to the case where the lamellae occur in stacks.  How-

ever, there is one rather arbitrary model involving
stacks of bundlelike “lamellae” that deserves com-
ment. This is shown in figure 5(c). Here one
polymer molecule participates in more than one

sheet, with entangled and “amorphous’ polymer
between. By drawing the model as shown, i.e., with

chains tilted with respect to the o, plane, the ques-
tion of cumulative strain is supposedly minimized.
Also the point that bundlelike lamellae will grow
on the o, face is temporarily evaded, except at the
outer (‘(1"‘(‘8 This model of “lamellar” structure
suffers from some drawbacks. First, there would
appear to be no simple way to predict the formation
of such a structure on theoretical grounds. Second, it
is difficult to discern how such a structure could lead
to the f[racture or surface replica patterns, with
many easily distinguishable steps, that characterize
lamellar spherulites.  To do this, it would apparently

15 An exception to this occurs in the case of a high energy surface comprised of
chain folds, which for obvious reasons cannot grow in the same sense as a bundle-
like crystal in the chain direction.

16 It is extremely improbable that chain entanglements would cause all bundle-
like nuclei to abruptly stop growing in the @; direction in such a manner as to
produce a uniform length comparable to the thickness of a lamella.

be necessary to assume that covalent bonds broke
only in the amorphous regions. It seems much
more likely that relatively few covalent bonds are
broken, and that the lamellar separation is opposed
mainly by van der Waals forces, for example those
at two chain folded surfaces. Finally, the tipping
of crystals at low draw ratios is difficult to explain
with the model.

The bundlelike models for “lamellae” criticized
above are all in the category where the flat “lamellar”’
surfaces are assumed to be of the o, type, i.e., where
polymer chains protrude from the surface. We now
consider briefly the possibility that the flat faces of
the lamellae might correspond to polymer chains
that lie bundle fashion parallel to the large flat faces,
but where the chains still subtend a right angle to
the radius of the spherulite. Entirely apart from
the fact that there is already some evidence that the
polymer chains are essentially normal to the large
flat lamellar faces (see [4] and [42]), this is an un-
likely model for a stable lamella of uniform step
height. The flat faces would be o type, and would
therefore grow normal to the spherulite radius at a
ate comparable to the radial growth rate, as im-
plied by eq (28), if cumulative strain did not occur.
If cumulative strain did occur, large lamellae with
large flat o-type faces would not be formed since the
crystallites would be of limited size, and tend to be
ellipsoidal in shape.

Our conclusion is that the coherent bundlelike
surface nucleus model does not lead to a tenable
representation of a typical lamellar spherulite, where
large stacks of more or less separable lamellae com-
prising the major fraction of the ecrystallization
present exist, and where at a fixed growth tempera-
ture each lamella has a relatively uniform step height
even with extended growth.

The remaining question concerns whether the
coherent bundlelike model of polymer crystal growth
can lead to a spherical object that is not lamellar.
For the case of large chain ends that are excluded
from the crystal, this theory appears to lead to
microcrystals scattered here and there throughout
the medium, the equilibrium dimensions of these
microcrystals being determined by the distribution
of molecular weight (see sec. 2.5). Similarly, cumu-
lative strain would lead to ellipsoidal microcrystals
of limited size. For the strictly coherent case, there
is no reason to suppose that these microcrystals would
be arranged into a spherical array. With the ad-
ditional assumption of noncoherent nucleation on
the surfaces, a spherical array of bundlelike but
nonlamellar microcrystals can be predicted (sec. 7).

5. Radial Spherulitic Growth by Coherent
Surface Nucleation With Chain Folds

5.1. Details of the Model and Derivation of the Radial
Growth Rate Law

Here it is assumed that the rate determining step
is the formation of a coherent surface nucleus of
monomolecular thickness by, length 1, and width a on
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the substrate crystal (fig. 6a). The end surface free
energy of this nucleusis o, and the two lateral surface
free energies are each taken as o. The quantityo,is
defined as in eq (1), and o has the same meaning as
in section 2.4. Both of these surface free energies
refer to abrupt phase boundaries, and are well
defined quantities.

The objective is to calculate the rate of nucleation
on the growing face of the lamella, since this estab-
lishes the radial growth rate of the spherulite (the
direction of radial growth is denoted by the heavy
arrow marked “G’’). The growing face may actu-
ally be wedge-shaped, the face on either side of the
peak having a surface free energy . The assumption
of such a geometry would not materially alter the
calculations to be given, and it is sufficient for the
purpose of calculating the radial growth rate to con-
sider the simpler model with one growing face. Note
that the polymer chains are normal to the spherulite
radius.

The value of I for the initial substrate could be as-
sumed to be that of a primary nucleus, I}=4a,/(Af),
but this is not necessary for the treatment: one could
equally well assume heterogeneous initiation. The
model leads in a natural way to many features of
lamellar spherulites. The connection between this
model and spherulite structure will be discussed in
section 5.4.

Region A’: The free
surface nucleus is

energy of formation of the

A¢o—2abyo,+2bjlo-+2ae—abl(Af). (30)
The edge free energy e is included to take account of
the possibility that a loop in a surface nucleus where
1<I* may be more difficult to form than one where
I>1*Y The inclusion of the edge free energy leads

17 The edge free energy is taken as e for 1<1*, and zero for I>>1*. In a more de-

tailed analysis, the edge free energy might be taken as € for 1<<1*, €; for 1=1*, and
zero for I>1*.

to only a slight complication of the results, and is
useful in discussing the step height and melting be-
havior of the crystal lamellae that will be observed
(see sec. 5.2).

The treatment for the coherent surface nucleus
with chain folds differs significantly from that given
for the corresponding bundlelike nucleus. The
quantity 1 will not change rapidly with growth, and is
to be regarded as fixed for a given nucleus as it
traverses the nucleation path. (Other folded nuclei
may of course have different values of 1, but in each
case 1 is constant for a given nucleus.) In this situa-
tion, the barrier ridge that must be overcome to form
a stable surface nucleus is at a=a,. Thus, during
the formation process for a given nucleus, two of its
dimensions, namely, b=hb, and 1=1* are fixed. It
remains to be determined what value of 1 leads to the
maximum rate of steady state nucleation. This
value of 11is denoted 1*.

From eq (30) it is readily determined that a grow-
able nucleus can be formed only when 1 is slightly in
excess of

20,

=G+ an A
If 1 has a value less than this, the embryo becomes
increasingly less stable as the width a is increased,
as shown 1n figure 6b. Similarly, if 1 has exactly
the value given by eq (31), no stable nucleus will be
formed, since the free energy of formation is a con-
stant and cannot ever become negative with any in-
crease of a (fig. 6b). Hence I* must be slightly in
excess of that given by the above expression.

The competition between two effects determines
the conditions under which the maximum rate of
nucleation will be observed. Notice from the
schematic diagram in figure 6b that at a=a, the
activated state with the highest free energy is associ-
ated with a value of 1 that leads to the formation of
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The coherent chain folded surface nucleus model of spherulitic growth and ils rate behavior.

(a) Lamella with folded coherent nucleus of longth 1, width a, and monomolecular layer thickness bo on its surface. Heavy arrow marked G, indicates direction
Arrow s-s’ indicates axis of spiral dislocation. Chain y-y’ indicates molecule incorporated bundle fashion into lamella.

of radial growth of lamellar spherulite.

(b) Schematic diagram illustrating cause of a certain value of the step height, 1*, giving maximum surface nucleation rate.
(c) Logarithm of radial growth rate of spherulite as function of temperature.

— — ——log G versus T if jump rate effect is small;

most representative case

where jump rate lowers log G causing maximum to appear near (T»+T,)/2; . . . . exhibits effect of excess nucleation rate in medium surrounding spherulite.
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a stable nucleus on further addition of step elements,
and conversely, the activated state with the lowest
free energy is associated only with the formation of
a metastable embryo. (The free energy of activation
at a=a,is marked “*”” in each instance.) Thus there
is some length slightly greater than that given by eq
(31) which will lead to a maximum steady state rate
of nucleation.

It has been shown in detail elsewhere (see eqs (59)
to (66) and appendix 5.2 of reference [3]) that

— 20, e kT
=) Theaf) The

(32)

is the value of the length of the growth nucleus that
leads to the maximum rate of steady state nucleation.
This is, of course, the step height of the crystal that
will actually be formed by the coherent nucleation
process.

On inserting eq (32) into (30) with a=a,, the free
energy of formation is found to be

4(byoo,+ ae) an(Af)

4 =""00

+2(T.  (33)

The second two terms in eq (33) arise from the term
kT/boo in eq (32). On inserting A¢"™ into eq (23),
there is obtained

= o (_AHFN ( 4byo [, (e/by)|T7,
GAlﬁ Gﬂ(l) exp < P > exp ( T(Ahf) (AT)kT
a (Ah,) (AT)T
‘—]—1%2"6 ) » o (34a)

if the unimportant factor ¢* arising from 2k7 in eq
(33) 1s ignored. An evaluation of the term exp
[ag(Aly) (AT) T/ T,2o] shows that it comes to approxi-
mately exp [(A7")/100] for normal values of the
parameters. This dependence on temperature is
completely negligible compared to the other two ex-
ponential terms in eq (34a), and the term may safely
be taken into the pre-exponential factor Gouy. Then
we have as a good approximation the expression

H*> (__4b06[6,,—{—(e/b0)]['2>

Th) AT kT
(34b)

Ga =Gy, exp (

[(AT) ! law]

for the rate of growth of chain folded systems in
region A’ which extends from near 7, down to 7.
(see below). The term e/b, will not exceed o, in
magnitude, and may be considerably smaller.

1t is somewhat misleading to derive eq (34b) by
differentiating eq (30) with respect to a and I, setting
the results (‘qual to zero to get 1*= 20",/(Af)+
2¢/bo(Af) and a*=2a/(4f), inserting these into (30)
to get Ap*=4(byoo,+ ae)/(Af) and thence to eq (34h)
by way of eq (21). Calculations involving this
method have been proposed in the literature in con-
nection with chain fold growth for the case e=0 [15].

592653—61——4

The free energy surface is not a continuum in the
region of interest as implied by the differentiation,
and the value of 1* obtained does not permit growth
at all, as is seen in figure 6b.

At very low supercooling, the step height will be-
come large enough so that a considerable number of
the molecules cannot fold if large chain ends are ex-
cluded from the crystal, as mentioned in section 2.5.

Region B’: The rate law cited above will be valid
from near 7, on down to a temperature T, corre-
sponding to a degree of supercooling of approximately
AT.=46T,/(Ahy)ay,. At this temperature and be-
low, folded nuclei of minimal size of the type de-
scribed in section 2.5 will appear in profusion in the
supercooled medium due to nonsteady state nuclea-
tion, and slow up or even stop the radial growth of
any fairly well developed spherulites that are already
present. The region below 7 is called region B’.
If it were not for the nonsteady state nucleation
effect, Region B’ would exhibit a (A7)™ radial
growth rate law analogous to eq (10). Alternatively,
bundlelike nuclei of nonsteady state origin may ap-
pear at T, if o, is sufficiently small for embryos of
minimal size.

Summary: A schematic diagram of the growth rate
behavior of this model is shown in figure 6¢. Curves
(1) and (i1) in region B’ represent different degrees of
interference with the radial growth rate of the spheru-
lite caused by the rapid incursion of crystallites of
nonsteady state origin into the surrounding medium.
The vertical mark near 7, indicates the restriction
that will occur on chain folding when the step height
approaches one half the molecular length if large
chain ends are excluded from the crystal. In the
case of small chain ends that can be accepted as de-
fects in the crystal, this restriction will be relaxed,
and chain folding can then occur nearer to 7).

In these plots, the negative temperature coefficient
part of the curves near the melting point is due to the
nucleation term, and the positive temperature part
occurring at lower temperatures is due to the effect
of the jump rate term.

Using normal values of the parameters in the nu-
cleation term in eq (34b), and setting AI*=20,000
cal mole™ (or alternatively, using eq (24) in its range
of validity), the maximum in log Gy is found to ap-
pear somewhere between 0.8 and 0.9 7',. Since the
glass transition temperature 7, for many polymers
obeys the empirical relation 7,=0.66 T, it is seen
that the maximum in log Gas falls about midway be-
tween T and Ty T, will often oceur well below the
maximum in log GAI say at 0.75 T,,. It follows that
the 7', transition will frequently be obscured by the
lowering of log G by the jump rate term. Thus it
is to be expected that only a simple maximum of log
Gy versus 7" will appear in many instances, as de-
noted by the solid line in figure 6¢. The 7', transition
would be most easily found in a polymer with low &
and high a,,;,, the transition being closest to 7', in
this case.

It can be shown for a number of systems that an
excellent fit of the radial growth rate of the spheru-
lites as a function of temperature can be obtained
with an expression of the form of eq (34b), i.e.,
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02.(G/Gy)=—AH*|RT—K,/T*(AT), where K, is a
constant. The value of K; can be used to determine
the product o, or more precisely o (o, 1 €/b), for a
chain folded lamellar spherulite. This product should
frequently lie in the range 100 to 1,000 erg? em™*.
Such values are obtained, but it is not certain that
they all refer to distinctly lamellar spherulites.

5.2. Behavior of the Step Height

The step height of a growing lamella, 1¥*, is given
by eq (32). This expression holds no matter
whether the lamella was originally heterogeneously
or homogeneously nucleated. The term 2¢./(Af)
will contribute at least one half of the full value of
I*, and possibly almost all of it. The contribution
from the £7/byo term is rather small, and nearly
constant, as indicated previously. The other term,
2¢/b,(Af), will now be considered, especially in re-
lation to how it affects the step height of the growth
nucleus compared to the primary one.

The step height of a homogeneous nucleus with
folds is 401/(A7‘) ¥ If e is neghgible, the step height
of the coherently grown lamella will be only shghtl\'

over one half of this value, namely, 2e,/(Af)-F
kT/byo. As the effect of e incronsos, the step height

of the growing lamella will eventually approach the
value 4¢,/(Af). The step height of the growth
nucleus will not exceed that of the primary nucleus
because e is a function of position, and will fall to a
low or zero value outside the edge of the primary
nucleus. (It will be recalled that e is a measure of
any extra work that might be required to cause a
loop to lie on a flat substrate in from the edge or at
the edge;it is therefore either zero or quite small for
a loop protruding over the edge.)

The main point here is that it is not always to be
expected that a growing lamella will have the same
step height as the primary nucleus with folds.

Temperature Dependence of Step Height: The tem-
perature dependence of the step height is of con-
siderable interest. It is seen from eqs (7) and (32)
that the step height of a growing lamella is

kT

* (“ae’ QC/bO)j m
—
I*= +

(ah)(AT) T (35)
Ignoring relatively unimportant variations with
temperature, this may be written in the approxi-
mate form

l*

Y :
=G+t (36)

Thus, 1* will increase with rising temperature,
reaching large values near 7',. In most experiments,
the quantity Z=#T/b,o will be negligible compared
to Y/(AT). (The value of Z will commonly be
roughly 20 A.)

It should prove possible in some cases to verify the
temperature dependence of the step height pre-
dicted by eq (36) by careful low-angle X-ray studies
on unoriented bulk polymer specimens crystallized

1s The primary nucleus may have a characteristic value of the edge free energy
€, which will cause 1 to slightly exceed 40./(Af) [3], but this may be ignored.
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at various temperatures. If the X-ray spacings
indicate such a dependence of step height with de-
oree of supercooling, this may be regarded as a
confirmation of the kinetic nucleation viewpoint of
chain folded growth proposed in this paper. This
confirmation would be especially convincing in the
case of a polymer that was known from electron
microscope studies to have a lamellar texture,
since this in itself strongly implies the existence of
substantially chain folded ecrystals. It is very
doubtful that strictly bundlelike crystallization
could lead to eq (36), because such erystals would
either grow in the 1 direction (noncumulative strain)
or abort (cumulative strain). However, a demon-
stration that eq (36) is obeyed may still only mean
that a substantial fraction of the crystallization
present is in the chain folded configuration, rather
than all of it; some bundlelike character is to be
expected in the otherwise chain folded lamellae, and
numerous small bundlelike embryos may be present.
(See also remarks in section 8.3 concerning crystal-
lization from the highly oriented melt.)

An interesting point that arises in connection
with the above is that the theory predicts that the
characteristic step height of the lamellae in a spheru-
lite can be alternated between different values by
successively crystallizing at different temperatures.
In this way it should be possible to make lamellae
that are alternately thick and thin as the radial
growth of a spherulite proceeds.

It is emphasized that the results quoted above
refer to isothermal crystallization. For slowly grow-
ing spherulites, sufficiently isothermal conditions
will be maintained, but at strong supercooling
where the rate of crystallization becomes high, the
heat of ecrystallization may raise the local tem-
perature and tend to artificially flatten out the I*
versus T curve predicted by eq (35) or (36).

Melting Behavior: Consider now the melting point
of the chain folded lamellae. It is readily deduced
from eq (30) that the temperature of melting of a
lamella that is large in the a and b dimensions is
given by

' ()= _ 29, 874
To)=Ta | 12055 (372)
where 1 is the step height of the crystal [3]. It is

seen that the equilibrium melting temperature, 7',
is the melting point of a lamella of infinite step
height. Krom this expression and eq (32) with
e=0, it is readily found that a lamellae of step height
1* formed at a crystallization temperature 7', will
melt only slightly above 7', on rewarming if the edge
free energy is unimportant. If on the other hand
e is large, so that the step height of the lamellae is
the same as that of a primary nucleus, 4¢./(Af), then
its melting point 7, will be just midway between
T,and T,,1.e., T),—=(T,+T,)/2.

The melting point of a polymer is commonly
understood to refer to the temperature where the
last detectible trace of crystallinity disappears.
Lamellae will ordinarily exhibit a certain distribu-
tion of step heights, and the “observed” melting



point, 7', (obs.), will thus refer to the larger of these.
We must expect the step height at the observed
melting point to reflect the mean step height of the
growth or primary nucleus, whose 1 value varies as
1/(AT). Suppose that the observed melting point
corresponds to a step height B times larger (or
smaller) than the mean step height of a primary
nucleus. Then 1=pli~4e.87,/(Ah,) (AT), where B
is to a first approximation assumed to be constant.
For this simple illustrative example one finds

T, (obs.)= (37b)

T (12 ZB

This expression indicates that a plot of the observed
melting point (as obtained on warming without
recrystallization) as a function of crystallization
temperature will be a straight line that intersects the
line 7,=1T,, (obs.) at T,. This may prove useful
in determining the equilibrium melting temperature.
However, the main points here are that the observed
melting point will tend to increase as the crystal-
lization temperature is increased, and that it is
entirely possible that such melting points may either
all be above the line 77, (obs.)=(T,+T,)/2, as for

B >1, or all below as fOI B<1. If the edge free
energy is large, and the distribution fairly broad, g
may be in the vicinity of 1.5 or slightly more. On
the other hand, if the edge free energy is negligible
and the distribution narrow, g will tend to fall in
the range 0.6 to perhaps 1.0. Experiments showing
that B was in the range 0.6 to say 1.5 or 2.0 would
provide strong evidence for the retention of the step
height of the crystal near that of the nucleus length.

The above results apply to the case where the
lamellae maintain their original step heights as they
are rewarmed. Small lamellae will melt out well
below 7, and any subsequent recrystallization at
this higher temperature would form higher-melting
lamellae (see below). Also, a certain increase in
step height may sometimes arise from lengthwise
diffusion effects in the chain folded erystal. Either
way, B will increase, and 7, (obs.) will be corre-
spondingly closer to 7. leues of B as high as 5
or so may still be regarded as being consistent with
chain folded growth, but the most “clear cut case is
that where g lies in the range of about 0.6 to roughly
1.5 or 2.0.

Some recent experiments indicate that a satisfac-
tory explanation of the melting of certain bulk
polymers of the lamellar type is given by eq (37b)
with reasonable g values [44].

Combination of eqs (37a) and (38) shows that the
melting process will be sharper for an assembly of
thick lamellae formed near 7', than the thinner ones
produced at lower temperatures. To this approxi-
mation, the breadth of the melting process is pro-
portimml to (AT). This result will be modified
somewhat when the distribution of step heights
within a given lamella is considered.

Recrystallization on Warming: Recrystallization
may occur on rewarming. The thinner lamellae
formed in the original crystallization at 7%, will
melt out at the 7', value characteristic of their step

height as described above. Then lamellar erystals
with the larger step height characteristic of the
u\sl.xlh/atlon temperature 1, =1, will tend to
form from the melted material.  Thus, on warming
from 7,4, to Ty, @ small step height will tend to be
replaced by a larger one. This effect should not be
confused with the slow and monotonic increase of
step height due to lengthwise diffusion of the chains
in the crystal that may sometimes take place. The
latter process, il it occurs, should be identifiable,
since it will lead to a slow and isothermal increase of
step height at the original crystallization tem-
perature.'®

Since the step height increases on recrystallization,
the new lamellae formed in this process will be
smaller in the a and b directions than the patch
originally melted out. The recrystallization process
may be promoted by the presence of loop type
crystals in  the immediate vicinity. Something
rather like what has been described may occur for a
lamella on a heterogeneous surface, but here the
problem is more complicated because of the inter-
action with the foreign substrate.

srowth of the step height to increasingly higher
ralues by recrystallizing at successively higher
temperatures through slow warming cannot be
carried out indefinitely, since kinetic considerations
will at some temperature near the melting point
prevent such recrystallization from taking place at
a sensible rate. The large step height achieved by
recrystallization at the highest practical temperature
1s not to be regarded as a “limiting” step height from
a theoretical point of view.

Distribution of Step Heights: We turn now to the
question of what the model implies about the dis-
tribution of step heights of various lamellae. To
a good approximation, it has been shown that the
mean square deviation of the step heights of different

lamellae about the mean value I'is given by [3]

AE e

For =10 erg cm ™2, =400 °K, and by=>5>107% ¢m,
the quantity ((I—1))* comes to 60 A, corresponding
to a mean deviation about 1 of only 7.8 A. Thus
the mean step height of a given lamella formed in the
coherent growth process is apt to be quite close to
the average for the entire assembly of lamellae.

If the edge free energy is greater than zero on the
face of the crystal, and falls to a lower value at the
edge, then the distribution of step heights of dif-
ferent lamellae will be even less than that given by
eq (38). The case described amounts to the physical
situation where a loop is a little easier to form at the
edge rather than upon the flat face of the lamella.

The treatment leading to eq (38) for surface
nucleation with chain folds is quite different from
the one that establishes the distribution of step
heights for primary folded nuclei. The difference
is that the distribution of step heights for various

19 If the step height does not increase to any marked extent on storage under
isothermal conditions at 7%, and if on rewarming in the manner indicated, a

small step height is replaced by a larger one, melting followed by recrystalhzatlon
is reasonable as the mechanism of the increase 1.
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folded primary nueclei about I, may be properly
treated in terms of a continuum model of the free
energy surface (see p. 83 and appendix 5.1 of refer-
ence [3]),' while in the case of the folded surface
nucleus of monomolecular thickness the discrete
character of the free energy surface must be recog-
nized in the calculation of the distribution of step
heights about 1* (see pp. 86-87 and appendix 5.2 of
reference [3]). However, the narrow range of values
of the step height at a certain growth temperature
is in both cases a result of the fact that the rate of
formation of the appropriate nucleus is at a sharp
maximum for some value of the step height, i.e., at
1* or 1.

The question of the constancy of the step height
within a given coherently growing lamella subsequent
to the initial surface nucleation act has been treated
in some detail by Lauritzen [29].2° Allowing the
height of each step element to fluctuate occasionally
about 1* and assuming that the polymer chain (be-
cause of its segmental character) can take on only
discrete values of 1, it was shown that the step
height would maintain itself slightly above the
value 1=2¢./(Af) for the case e=0 from near 7T,
down to temperatures corresponding to a rather high
degree of supercooling. Though some minor dif-
ferences exist, the more rudimentary theory given
in this paper, where 1* is assumed to remain constant
after the initial surface nucleation act, is verified on
the main points.?® Physically, the constancy of the
step height of a given lamella during growth is a
result of the fact that the step height cannot become
smaller than 2e./(Af) without becoming unstable,
and does not tend to become substantially larger
than this value because it is expensive from an
energetic standpoint to allow a loop to protrude
much out of the fold plane. This causes the lamella
to have the maximum steady-state growth rate when
its step height is 1* (ef. sec. 5.1).

Insofar as the disorder of a folded ecrystal is a
result of the distribution of step heights, i.e., irregu-
larities in the fold plane, Lauritzen’s calculations
indicate that crystals formed at low supercooling
should be more ordered than those produced at
high supercooling, where fluctuations are more
pronounced.

5.3. Coherent Loop Type Growth and Spherulite
Structure: Lamellar Twist

Growth by coherent nucleation of folded nuclei
can lead to the formation of a spherical object that
in most important respects strongly resembles a
lamellar spherulite.

20 The authors are deeply indebted to Prof. F, C. Frank and Dr. M. P. Tosi
for sending them a manuscript [41] of their work on fluctuations of step height prior
to publication. The paper of Lauritzen’s referred to above, also unpublished,
borrows heavily from the methods outlined by Frank and Tosi. However, they
do not treat a polymer chain that is explicitly made up of discrete units. As a
result of this and possibly other differences, Frank and Tosi predict that chain
folded growth will not occur above a certain temperature because 1*>2¢./(Af).
Lauritzen’s calculations indicate that this upper limit is removed by the assump-
tion of discrete chain segments.

Both of the treatments with fluctuations suggest that 1*, after falling initially
with increasing supercooling more or less according to eq (36), will begin to rise
again at strong supercooling. However, Lauritzen’s analysis suggests that this
would probably be seen experimentally as a certain flattening out of the 1* versus
T curve; the sharp rise in 1* oceurs at such strong supercooling that it will fre-
quently not be in the experimentally accessible range, and may be below 7.
Hence eq (36) applies as a good approximation from moderate to very low
supercooling.
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Consider first the case of a heterogeneously ini-
tiated spherulite. Here stacks of lamellae of the
general type shown in figure 6a will grow outward
from various sites on the nucleation center. (The
reader is reminded again that the growing surface
may actually be wedged-shaped.) The o, planes of
the lamellae (loop containing surfaces) will be more or
less parallel to the spherulite radius, and the polymer
chains will be essentially normal to the radius.

The spherulite will tend to fill out and become a
three-dimensional object by virtue of one or more of
several processes. First, new lamellae will tend to
form and grow along the ¢, faces of those already in
existence. Second, spiral dislocations can occur.
The axis of these dislocations, s—s’, will be at a
right angle to the o, plane, i.e., normal to the
spherulite radius, and “radial” growth will occur
from the edges of such dislocations. Certain types
of branching are also possible as secondary nucleation
events. For example, noncoherent nucleation may
occur on the faces or edges of a lamella.

It is evident from the above that this model leads
in a natural way to the lamellar and polymer chain
orientation common in spherulites, and it is also
clear that a three-dimensional spherical object can
be formed. If the number of active heterogeneous
nuclei is very large, easily recognizable spherulitse
may not form because of early impingement, but the
polymer texture will still be basically lamellar.
This effect may be greatly reduced by ridding the
system of the heterogeneities, which 1s difficult, or
somewhat reduced by destroying some of the em-
bryos in the fissures on the surface of the heterogenei-
ties by heating the sample further above 7', prior to
crystallization (see sec. 8.4.).

Homogeneous nucleation can also lead to a lamellar
spherulite. Here the nucleus will first grow a small
platelet. Then by the mechanisms mentioned above,
a three-dimensional object can form from it. Early
in its life, the spherulite may be fan or sheaflike.
(The same would be true of a heterogeneously
nucleated spherulite if only a few nucleation sites
on each heterogeneity were active.) The spiral
dislocation mechanism is probably important in
creating a three-dimensional spherulite, but the
radial growth itself is not due to the formation of
such spiral ramps. At sufficient supercooling, the
number of homogeneous nuclei will become very
large even early in the crystallization process, so
that obvious spherulites may not appear despite the
fact that the texture is actually lamellar.

An essential point to bear in mind in the case of
ideal coherent growth with chain folds is that a num-
ber of the lamellae should extend outward from the
nucleation center without interruption a substantial
fraction of the way to the boundary of the spherulite.
It should be possible to obtain information on this
point by examining electron micrographs of a cross
section of a spherulite. Evidence that a single la-
mella without any obvious disruption extended over
a substantial fraction of the spherulite radius would
be consistent with the coherent growth with chain
folds mechanism, and at the same time give reason
for anticipating a (A7)"! radial growth rate law.



Geil [5] has shown that individual lamellae extend
over the entire radius in the spherulitic structures
of bulk polyoxymethylene.

In the coherent growth process, chain ends will
appear from time to time on the growing surface as
the loops are laid down. Continuation of growth of
the surface layer involved may be accomplished by
allowing the incomplete step element to come off
the crystal face and protrude like a cilia from the
o, face. This is certainly what will happen in high
molecular weight material if the chain ends are suf-
ficiently large. Renucleation with a new molecule
at the sites where the other molecule terminated
would be more rapid than the formation of a new
coherent surface nucleus, so such a process would
not materially alter the rate equations given. Small
ends that can enter the crystal in sufficient numbers
will allow relatively normal chain folding even for
material of moderate molecular weight. Chain ends
may play a role in initiating dislocations.

It has already been noted that the perfection of the
folded surface will increase with increasing crystalli-
zation temperature. This will tend to cause more
perfect crystals of higher density to be formed at
higher temperatures. It might be thought that the
inclusion of chain ends in the folded ecrystal might
have a strong effect in the opposite direction.
Actually, a simple calculation shows that over a wide
range of step height, the number of chain ends
included in the crystal per unit volume will not
depend strongly on the step height, so increasing
density with increasing crystallization temperature
is commonly to be expected.” The inclusion of a
certain number of chain ends in the folded erystals
of a high molecular weight polymer must be expected
to slightly lower the melting point. Nevertheless,
for polymer crystallized in the usual range of super-
cooling, the finite step height must be expected to be
the main cause of the lowering of the melting point
below 7', as deseribed by eqs (37).

Some homopolymers may be practically com-
pletely lamellar when crystallized, but in other cases
a considerate amount of amorphous matter may exist
between the lamellae, especially if the lamellae are
strongly twisted. The amorphous material between
lamellae may be oriented, and abnormal in other
respects.

The chain fold model of spherulitic growth leads
in a straichtforward way to the existence of terraces
corresponding to the lamellar step height in surface
replicas of fractured spherulites. 1In the case where
the number of interlamellar links is low (see below),
van der Waals interactions comprise the main forces
that must be overcome to separate the lamellae.
Steps of the type illustrated in figure 6(a), as viewed
from a direction essentially normal to the o, plane,
are to be expected. This appears to correspond
closely to what is often observed in electron micro-
graphs of material crystallized from the unoriented
melt. If the number of interlamellar links is high,
cleavage of the lamellae may be quite difficult, and
result in considerable damage to the step structure.

2t Other manifestations of increased perfection, such as a sharpening of certain
X-ray lines, are also to be expected as the erystallization temperature is increased.

Interlamellar  Links: A fairly large number of
molecules may be incorporated bundle-fashion into
a chain folded lamella growing in the bulk super-
cooled liquid, as illustrated in figure 6a by the mole-
cule marked y—v’. This may be done to a certain
extent without seriously affecting the step height
of the folds or the rate expressions. Kven the
fairly frequent inclusion of such chains will not tend
to incur the cumulative strain effects that may be
associated with the formation of purely bundlelike
structures. Also, groups of lamellae will tend to
grow outward from the nucleation center together.
The situation should resemble that shown in figure
6a, except that the growing faces of the lamellae
will frequently be ecloser together. Under these
circumstances, it is inevitable that one polymer
molecule will occasionally become involved in two
or perhaps even three different lamellae, creating
interlamellar links. These links should affect the
mechanical properties of spherulitic bulk polymers,
since the lamellae will be more difficult to separate
than would be the case if such links were absent.

Polymer molecules emanating bundle-fashion
from the fold plane may sometimes return to the
same crystal at a position well removed from the
original point of exit. This type of “folding”
may be denoted as “nonadjacent re-entry”, as
opposed to the usual type of chain folding, which
exhibits adjacent re-entry. However, it seems quite
unlikely that the basic structure of a well-defined
lamellar polymer crystal formed at low to moderate
supercooling consists of folds that largely or entirely
exhibit nonadjacent re-entry.

In unoriented bulk polymers crystallized under
conditions where the number of interlamellar links
is low, elongation of the specimens by cold stretch-
ing in one direction should cause the lamellae to
tend to aline in the direction of stretech; in such a
:ase, the polymer molecules in the crystals would
tend to be oriented more or less perpendicular to
the direction of stress. Such a result would provide
strong support for the existence of lamellae with
chain folds. The existence of too many interlamellar
links, local melting caused by rapid stress, or exces-
sive elongation, could easily lead to the opposite
result. (It should be understood that the above
refers to polymer crystallized from the unoriented
and relatively unstrained supercooled liquid state;
experiments carried out on crystallization of highly
oriented liquids, e.g., cooling of hot-drawn filaments,
are specifically exempted.) Examples where the
tipping of ecrystals at low draw ratios has been
observed may be found in the literature [30, 31,
32, 33]. At least some of these studies appear to
refer to the required type of experiment. Results
of this kind led Storks [34] to originally suggest
the existence of chain folds.

The existence of interlamellar links in polymer
crystallized in bulk may cause such material to
differ from masses of chain folded polymer platelets
filtered from dilute solution preparations. In the
latter case, interlamellar links should be virtually
absent. If numerous, the interlamellar links in
the bulk crystallized polymer might cause disturb-
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ances in the solubility, mechanical properties;, and
melting behavior.

Lamellar Twist: The remaining question is that
of the origin of twist of the lamellae. The optical
studies noted earlier indicate that the lamellae (or
more correctly stacks of lamellae) in many real
spherulites are twisted, and it remains to be seen if
coherently grown lamellae with chain folds could
exhibit such an effect. The type of twist under
consideration here is shown schematically in figure
7a. 'The bladelike lamellae have a definite pitch,
and revert from time to time to their original orienta-
tion at a repeat distance dg as one proceeds along the
radius of the spherulite. The heavy arrow marked
“G” indicates the direction of radial growth. The
leading face of the lamella has been drawn wedge-
shaped to correspond to growth in a preferred
crystallographic plane (see also fig. 7b).

The twist of the lamellae can arise from stress
in the plane of the chain folds. One way in which
the required type of stress can arise will now be
outlined.

Let the polymer chains in the interior of a lamella
be arranged in some definite pattern, say the hex-
agonal array shown as small heavy black dots in
figure 7b. It is assumed that this mternal packing
arrangement does not lead to twist. Now consider
the “lattice” of the chain folds that is consistent
with this internal structure. If we consider the
chain folds as occupying a roughly spherical volume
element, the situation shown in figure 7b results.
If the chain folds occupy more than a certain volume
(denoted by large open cireles) repulsive forces will
act between the folds as indicated by the overlap
(shaded). The main point to notice is that the
“lattice” created by the chain folds on the two o,
surfaces is not the same as that characteristic of the
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Ficure 7.

(a) Schematic representation of lamellar twist.

VOLUME ELEMENT OCCUPIED BY FOLD

interior of the crystal, and that if the folds are
larger than a certain size, an anisotropic surface
stress is certain to result. (A different packing of
the chain folds can be introduced by alternating
the chain folds in the layers of molecules in figure
7b, but this simply leads to straight rows of folds
that lie at an angle of 60° to those shown.) The
surface stress increases the free energy of the crystal,
and the system will tend to undergo slight rearrange-
ments that will minimize the total free energy.

There are two basic ways in which the lamella
can reduce the repulsion of the chain folds. First,
the lamella can twist slightly to create better surface
packing (see below). This will, of course, tend to
be balanced by forces due to the internal packing
arrangement. Second, the chain folds may tend
to become staggered, causing the folded surface to
resemble a terra cotta roof. The staggered config-
uration corresponds to that where the polymer
chain axes are no longer perpendicuiar to the plane
of the chain folds.*® Specific forces in the interior
of the lamella, related to the particular way in which
the X-X-X groups that comprise the chain achieve
best packing, may tend to resist such staggering.
It is possible that the minimum in free energy will
be achieved if both effects occur.

Now consider the problem of the origin of the
twist in a body with surface stress of the type that
may occur in polymer lamellae. The particular
type of surface stress arising from the model shown
in figure 7b may be illustrated schematically as in
figure 7c. Here the solid body of dimensions x, y,
and 1* possesses a surface stress f in dynes ecm™2
that is distributed over a surface layer of thickness

22 The individual chain folded crystals formed from dilute solution may either
be flat, or resemble hollow pyramids. In the latter case the folds are staggered,
and the chains are not perpendicular to the o, plane. (See for example ref. [43].)

e\

CHAIN FOLD FACING READER
CHAIN FOLD ON OPPOSITE SIDE OF LAMELLA (c)
CHAIN IN INTERIOR PORTION OF CRYSTAL

Origin of lamellar twist in spherulites.

(b) Schematic view normal to fold plane of lamellar crystal showing repulsion (shaded areas) leading to surface stress f.

{¢) Macroscopic model of surface stress.

A similar stress pattern exists on the opposite side of the body.
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v1*, where v is a small fraction. The situation on
the opposite side of the parallelepiped is identical
to that just described.

From the theory of the buckling of plates® it
can be shown that such an object will develop
twist or warp when f exceeds a certain value which is

S l* 2
=5, (%)

Here S is the shear modulus. Numerical estimates
for the extremely thin lamellae characteristic of
spherulitic crystallization indicate that twist can
arise for surprisingly low values of £,/S if 1* is in
the usual range for such crystals. It is therefore
considered entirely reasonable to propose that
surface repulsions of the type described can lead to
the twist of the lamellae. Surface stress arising
from other causes could also lead to a similar effect.

If for some value of 1* the crystal is already
twisted, the twist will tend to become more prom-
inent if 1* is reduced further. This assumes, of
course, that x does not fall off as rapidly as 1*
The variation of v with 1* is unimportant in most
applications.

Perhaps the most important prediction that
arises from the present conception of the origin of
twist in coherently grown lamellae is that d, will
tend to increase rapidly as the growth temperature
is increased and at some temperature become ex-
tremely large. In practical terms this means that
the concentric bands observed in many spherulites
when viewed with crossed nicol prisms will become
separated more and more as the growth temperature
is increased, finally disappearing altogether. The
lattice forces in the interior of a lamella tend to
keep it in the untwisted state, while the surface
stress promotes twist. Hence, if the step height
I* increases as it does with an increase of growth
temperature, the twist will rapidly become less pro-
nounced at the same time.

When a certain value of I* is reached (or more
precisely, a certain value of 1*/x), the twist will
disappear completely. Examples where the twist
diminishes rapidly with increasing growth tempera-
ture are well known in lamellar spherulites. It is
conceivable that the situation described above could
be reversed in some cases because X increases more
rapidly than I* with rising growth temperature.

Considering the proposed mechanism leading to
twist, it would not be surprising to find that lamellae
with a marked warp or twist were also characterized
by the polymer chains being not exactly perpendic-
ular to the plane of the chain folds.

A heterogeneously nucleated spherulite may have
sectors with both right and left handed twist. At
any given nucleation site on a heterogeneity, lamellae
with a given sense of twist will be generated, and the
sector that grows out from this site will tend to

(39)

23 The author is indebted to J. N. Frankland of N BS for deriving this result,
and for several helpful discussions of the problem of twist in lamellar systems.
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preserve this particular twist (see below). The
quantity ds will be the same for both right and left
handed sectors. If the polymer is heated above 7,
embryos preserving the sense of twist may be re-
tained in cracks or pores in a heterogeneity, with
the result that a spherulite similar to the original
one will frequently be regenerated at the same place
on subcooling. A boundary will exist between right
and left handed sectors. Since the probability of
polymer chain connections between these sectors is
small, spherulites should frequently fracture under
shear at such boundaries.

If the lamellae growing out from a nucleation cen-
ter are either densely packed, or grow out together
as a stack, the sense of the twist in the sector under
consideration will be preserved. (This is the “co-
operative effect’” of Keith and Padden [9].) How-
ever, if the individual lamellae are fibril-like and
loosely packed, a spherulite where right- and left-
handed lamellae are intertwined may appear. Such
a spherulite would not exhibit distinet bands when
viewed under crossed nicol prisms, despite the fact
that the individual lamellae, or groups of lamellae,
were actually twisted. Only the maltese cross effect
would then be seen.

Summary: The foregoing development indicates
that the coherent growth mechanism with chain folds
can reproduce many of the structural features of
lamellar spherulites. The existence of the lamellae
themselves, and the behavior of the step height that
characterizes them is explained. The orientation of
the lamellae, and the orientation of the polymer
chains in the lamellae, is in the correct relation with
respect to the radius of the spherulite. Moreover,
the twist frequently exhibited by stacks of the
lamellae can be accommodated by the theory, thus
removing one of the objections that had heretofore
been leveled at coherent growth mechanism generally.

Our conelusion is that the coherent growth mecha-
nisms with chain folds, with its (A7")~! radial growth
rate law, is worthy of serious consideration in the
analysis of the behavior of lamellar spherulites.

Consideration will now be given to the problem of
spherulitic growth by noncoherent surface nucleation
with chain folds.

% 6. Radial Spherulitic Growth by Non-
coherent Surface Nucleation With Chain
Folds

6.1. Basis of Model]

It is conceivable that coherent growth of the kind
described in the previous section will be hampered
by certain effects so that such growth practically
ceases after a time. For example, continued co-
herent growth may in some cases lead to cumulative
surface strain on the o, faces because of the existence
of chain folds that are slightly too large. Then after
coherent growth has proceeded for a time, the end
surface free energy will take on a value ¢, that is
larger than o,, which is sufficient to practically
completely arrest coherent growth. The value of
o on the coherently growing face will probably



also take on a higher value which may be denoted
o(y. The subscript (s) denotes strain.

The problem that will be studied in this section is
whether or not it is possible that radial growth can
be reactivated in such a case by the formation of a
noncoherent surface nucleus on the presumably still
wettable face of the stunted lamella. The rate laws
for such growth will be derived, and the conditions
under which the formation of a noncoherent surface
nucleus will be the rate determining step in the radial
growth of a spherulite determined. The effect of
such nucleation on spherulitic structure will be
mentioned.

The concept that noncoherent surface nucleation
may be involved in spherulitic growth is due to
Price [16]. He suggested that the cessation of co-
herent growth might result from chain entangle-
ments. The assumption used here that the cessation
of coherent growth results from cumulative strain
seems justified, if only as an initial hypothesis, by the
structural considerations mentioned above. The
rate laws to be derived below should hold at least
approximately for noncoherent surface nucleation
that follows upon the cessation of coherent growth
due to any cause.

The model shown in figure 8a is used. A non-

coherent surface nucleus with chain folds in the form
of a parallelepiped of dimensions a, b, and 1 is as-
sumed to form the face of the stunted lamella  The
noncoherent nucleus has normal ‘“unstrained” values
of o, o, and Ah;. The substrate lamella bears the
strained values of the surface free energies o, and
G5, but the volume contribution, Ak, has its normal
value. The noncoherent surface nucleus attaches
to the substrate lamellar face at an angle, ¢ or 27
—, that is consistent with minimizing strain. Thus,
there is a true interface between the surface nucleus
‘and the strained substrate crystal. This means
that the noncoherent surface nucleus will behave in a
three-dimensional manner, provided that neither a,
b, nor 1 falls to minimal dimensions. Observe that
the term ‘noncoherent’” does mot mean that the
surface nucleus is not attached to the substrate.

Once a noncoherent surface nucleus of stable size
is attained, coherent growth begins again, and the
spherulite radius at first grows rapidly in the direc-
tion indicated by the heavy arrow marked “G”.
Then the surface strain gradually accumulates, and
the lamella is stunted after growing a distance A.
After a time, a noncoherent surface nucleus forms,
and the process is repeated. Under appropriate
circumstances, the formation of the three-dimensional
noncoherent surface nucleus may be the rate de-
termining step in the radial growth process.

6.2. Rate of Radial Growth With Chain Folded

Noncoherent Surface Nuclei

Region A’’ (upper): Assuming that a, b, and 1 may
be regarded as variables in the sense that they have
not reached minimal values, the free energy of forma-
tion of the unstrained noncoherent surface nucleus
illustrated in figure 8a may be written

A¢=2abo,|2blo+(20—6)al—ablaf  (40)
where 6 is defined by the relation
O interface = G(s)_6+ G. (41)

Here ointerace 18 the total interfacial free energy be-
tween the surface nucleus and the lamella to which
it is attached; o, is the surface free energy on the
face of the strained lamella. The other quantities
have the same significance as in section 5. The
edge free energy is omitted for simplicity.

SPHERULITE
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(a) CENTER OF SPHERULITE ¢
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Ficure 8. The noncoherent chain folded surface nucleus model

of spherulitic growth and its rate behavior.

(a) Noncoherent surface nucleus of dimensions a, b, and 1 on strained substrate
lamella. Heavy arrow marked G shows direction of radial growth of modified
lamellar spherulite.

(b) Logarithm of radial growth rate of spherulite as a function of tem-
perature. — — — — log G versus T, if jump rate effect is small; most
representative cases where jump rate causes maximum to appearinlog G;. . . .
exhibits effect of excess nucleation in medium surrounding spherulite.
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The quantity é is a measure of the interaction of
the noncoherent surface nucleus with the strained
substrate lamella. 1t takes on a value of zero if
there is no interaction between the two objects. 1In
this case A¢ is identical to that for a primary nucleus
with chain folds. On the other hand, if o —a
and 620, eq (40) becomes identical to the expres-
sion for strictly coherent surface nucleation (¢f.
eq (30) with e—0). Thus é will in general have a
value between zero and 2o

A large value of 6 thus indicates strong interaction
of the noncoherent surface nucleus with the substrate
(high degree of wettability), and a small value of 6
indicates weak interaction (low wettability).

Near the melting point, a, b, and 1 may be regarded
as variables, and it is therefore proper to calculate
A¢* on the basis that the nucleus is formed from
many step elements. Using procedures of the type
outlined in sections 2.3 and 2.5, it is found that

=40 ,/Af, (42a)
a*=40/Af, (42b)

and
b*=(46—28)/Af, (42¢)

so the free energy of formation at the saddle point
in the free energy surface described by eq (40) is at
32a(c—6/2)0,

*:
A¢ @r)?

(43)

Thus from eq (21) the radial growth rate would be *

(e _5%26(6—6/21%7';)
Guwoner =050 (= ) ox0 (=" paryie

(44)

[(AT)" 2 law]

provided that (1) the quantity b* had not fallen to
b, because of too large supercooling and (2) nonco-
herent surface nucleation was actually the rate
determining step.

Let us now consider the range of validity of eq
(44). First, it is readily found from eq (42¢) that the
nucleus will maintain its three-dimensional character
only if the degree of supercooling is less than

4(c—8/2)T,,

ATs = (Ahf) bo

(45)

At temperatures lower than Tj, the nucleus is mono-
molecular, i.e., b=hy, and the (A7)~? law does not

apply. Further, the condition
o (— 2bog0e , S &)
e (=g (=

o= __4b00'm)0'n(s>\ .
>>(.\])< —WCT ) (46)

24 If an edge free energy 2ae had been included in eq (40), 1* would have been
40./Af+2¢/(20—5), and eq (44) would have an additional term exp [—8-76’1‘,:,',/’1‘(Ahf)
(AT)kT]. This will not seriously alter the (A7)-2law predicted by eq (44) in its
range of validity.

must hold. The left hand inequality simply states
that “unstrained” coherent nucleation must be more
rapid than noncoherent nucleation. This will always
be true when the degree of supercooling does not ex-
ceed AT;, and need not be considered further. The
right hand inequality states that noncoherent nucle-
ation must be more rapid than “strained’” coherent
growth, so that noncoherent nucleation will be the
rate determining step in the radial growth process.?
This will be true when

() %e(s) 2(AT‘;)
o, > A7)’ (47)
a condition that will hold according to the assump-
tions used in the model.
Region A’ (lower): At a degree of supercooling
equal to or exceeding that given in eq (45), the non-

coherent nucleus becomes monomole( ular. Here the
free energy of formation at a=a, is
A¢:(]) 4@la(cﬂ+e/bvﬂL (48)
by(Af)—(26—8)
when the edge free energy is included. Somewhat

below Ts by(Af) will be considerably larger than
(20— 6), and the radial growth rate may be approxi-
mated as

T (Ah)(AT) kT
(49)

G a7 gower) = Go (1) cxp( kIII,*>(\l <_f1.bﬂ"("f—+‘/bn)f m)

[(AT) ! law]

which is identical to the radial growth rate for co-
herent loop type growth in region A’.

Region B"": The rate law described by eq (49) will
hold down to temperatures corresponding to a super-
cooling AT.~46T,/(Ahy)amn. There and below, the
rate of injection of nuclei in the surrounding medium
will increase as described under Region B’ ‘of section
5.2.

Summary: A schematic diagram of the growth rate
behavior of this model is shown in figure 8b. Even a
fairly large value of 6, say in the vicinity of 3¢/2,
will still give a (AT)? radial growth rate region that
extends from near the melting point on ‘down to
growth temperatures corresponding to a rather high
degree of supercooling. For such values of 8,
050, need be only several times larger than oo,
at ordinary supercooling to satisfy eq (47). How-
ever, the possibility exists that a rate transition from
a (AT)? to a (AT)™! law may occur at T;, as noted
in figure 8b. This transition will not be particularly
abrupt, and in the case where AT; is large, the rate
laws will be mixed to the point that Lh(‘\ cannot be
clearly differentiated.

25 The right hand term in eq (46) will be even smaller than indicated when the
growth is strongly arrested by cumulative strain.
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6.3. Noncoherent Loop Type Growth and Spherulite
Structure

In broad aspect, a spherulite built up with chain
folds by the process (rapid coherent growth—arrested
“strained” coherent growth—noncoherent nuclea-
tion) will resemble one built on the coherent loop
pattern. The spherulite will be basically lamellar,
the chain axes will be normal to the radius, and the
plane of the chain folds will tend to lie along the
spherulite radius. Also, the coherently grown part
of the lamellae will behave in a manner similar to
that described in the previous section. However,
there will be certain differences that may distinguish
coherently grown from mnoncoherently grown loop
type spherulites.

During the growth process, the lamellae will be
disoriented with respect to the substrate at an angle
of ¢ or 2r-y¢ at intervals of A. For a completely
isolated lamella, the noncoherent nucleus will attach
to the substrate with equal probability at ¢ or 2r-¢,
so that such a lamella might show disturbances in its
sense of twist at intervals of A.  Also, a distribution
of ¢ values may exist.

Perhaps the most unusual feature of spherulitic
growth on this pattern that may become observable
in an optical microscope is that if A becomes suffi-
ciently large, spasmodic radial growth may be ob-
served. Each rapid increase in radial growth would
correspond to the coherent growth that follows upon
the formation of a noncoherent nucleus. The dis-
tance traveled in each pulse would correspond to A.
If sufficiently small, the repeat distance A may lead
to characteristic X-ray spacings, but these would
probably be very difficult to identify or observe.

Since o, increases because of cumulative strain as
coherent growth proceeds, the characteristic step
height 1* will tend to increase somewhat as the
coherent growth step takes place. This is shown
schematically in figure 8a. This effect would prob-
ably be observed only with difficulty.

The extension of the interface between the strained
crystallites should provide possible sites for the
initiation of spiral dislocations (see s—s” in figure
8a).

Another interesting point is that the accumulated
strain will tend to cause the lamellae to melt out on
rewarming just a little above the crystallization
temperature. As noted earlier, coherently grown
lamellae with chain folds will generally melt out well
above the ecrystallization temperature (eq 37b).
The predicted low melting of the lamellae with
cumulative strain may prove useful in eliminating
the possibility of noncoherent growth in specific
cases where such behavior is known not to occur.

Noncoherent nucleation may contribute to the
formation of dendritic structures even in the case
where the rate determining step is strictly coherent.
Thus, noncoherent nucleation on the o-type faces
of a coherently formed lamella (such as that facing
the reader in figure 6a) could lead to fern- or treelike
structures. Such effects probably assist spiral dis-
locations in forming three-dimensional semicrystal-
line spherulites in some instances.

The noncoherent loop type growth model is real-
istic enough to at least warrant testing spherulite
egrowth rate data to see if they accord with a (A7)~
law. This rate law is to be anticipated in lamellar
spherulites that grow in a spasmodic manner near
the melting point, since the coherent model with
chain folds will not lead to such an effect.®

7. Polymer Crystal Growth by Noncoherent
Bundlelike Surface Nucleation

7.1. Basis of Model

Suppose that large chain ends limit coherent
bundlelike growth as described in section 4, so that
only tiny crystallites can develop by this mechanism.
We will now examine the possibility that noncoherent
surface nucleation will enter and reinitiate growth,
and thereby produce a large microcrystalline and
spherical object.

The model employed is shown schematically in
figure 9a. The inhibition to continued coherent
growth of the substrate crystal is a result of the
physical obstruction presented by the chain ends—a.
We assume that the presence of the chain ends also
causes the surface free energies of the substrate
crystal to have the “strained” values o, and o
which are larger than the normal values ¢ and o,.
The latter refer to the surface free energies of rela-
tively small bundlelike structures as yet unaffected
by chain ends.

Alternatively, it could be assumed that cumulative
strain resulting from growth in the @ and b directions
caused ¢ and especially ¢, to increase.

It is considered that if a large spherical object is
to be built at all on the bundlelike pattern, the
present model is, at least in the beginning, a more
reasonable one than the strictly coherent bundlelike
model discussed in section 4, where the possible
restrictions imposed on crystallite size by large chain
ends or strain were arbitrarily neglected.

We will assume that a noncoherent surface nucleus
in the form of a parallelepiped with the dimensions
a, b, and ! forms on the strained substrate crystal.
This noncoherent bundlelike surface nucleus has nor-
mal values of ¢, and ¢. The noncoherent surface
nucleus is assumed to form by virtue of the wetta-
bility of some portion of the substrate crystal by
a normal crystal. Once it reaches critical size, this
noncoherent surface nucleus will lead to coherent
growth of a new crystallite of limited size. Then
the process will be repeated. It is emphasized
that the noncoherent surface nucleus is actually
attached to the substrate, and that there is a true
interface between the two objects.

7.2. Rate of Radial Growth With Noncoherent
Bundlelike Surface Nuclei

Region A'" (upper): Sufficiently near the melting
point, @, b, and / may be regarded as unrestricted

26 Tn making this comment, it is assumed that other possible causes of spasmodic
growth, such as fluctuating temperature at the spherulite boundary due to
experimental conditions (e.g., rise and fall of bath temperature) or heat dissipation
effects, have been eliminated.
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by any minimal molecular dimensions. The free
energy of formation of the noncoherent bundlelike
surface nucleus shown in figure 9a is

Ap=2aba,+2blo+ (20— ) al—abl(Af)  (50)
where 6 is defined in a manner analogous to eq (41).
It is readily determined that

1*=40,/(4f) (51a)
a*=40/(4f) (51b)
b*=(45—25)/(4f) (51¢)
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Ficure 9. The noncoherent bundlelike surface nucleus model

and its growth rate behavior.

(a) Noncoherent surface nucleus of length 7, width a, and thickness b on strained
substrate erystal. Chain ends denoted

(b) Logarithm of radial growth rate as a fun('tlon of temperature. The solid,
dashed, and dotted lines have the same significance as in previous diagrams.
(See text for assumptions required to obtain spherical object from this model.)

which on insertion in eq (50) leads to

320(0_5/2)%_
(af)?

Then with eq (21) we have

GA” (upper) — & G, exp ( T > (

[(AT)~% law]

Ag*=

320(0—5/2)17917?,,
T2(Ah )X AT)%kT (Ah)2(AT)*T

(53)

if the formation of the noncoherent surface nucleus
is indeed the rate determining step in the radial
growth process. The quantity [* is not a step height
in the case of a bundlelike nucleus, since the nucleus
will grow to at least a certain extent in the / direction.

By comparison of eq (53) with the corresponding
expression for homogeneous nucleation of bundle-
like nuclei, eq (6) or (18), it is seen that the non-
coherent surface nucleus model can provide a simple
physical explanation for the reduction in the free
energy of formation of a three-dimensional growth
nucleus below that of the corresponding three-
dimensional primary nucleus proposed by Flory and
Melntyre [17].  The reduction factoris 1— (8/2¢), and
this results from the assumption that an unstrained
surface nucleus can wet a strained erystallite of the
same polymer to some extent.

Region. A”" (lower) : Equation (53) will hold on

down to a temperature where b approaches b,. This
will occur at a degree of supercooling
(40—20) T,
Al -————=. 54
= By )bo (54)

Below T3, the rate law may be approximated as

4bu<70’p T;Zn

Grotom—Grexp (—5H) exp (= .
A (lower)— U €XP T exp T(Ah,) ATET

[(AT)~ ! law]

Region B’’: At a growth temperature correspond-
ing to a degree of supercooling of AT,=4¢1T,,/(Ah))
(i, bundlelike embryos of small size will be trans-
ported from the superheated state above 7, into the
supercooled state by mnonsteady state nucleation
where they will become nuclei of stable size. As in
previous cases, this will lower the radial growth rate
of any spherulites born at or near t=0.

Summary: A diagram of the radial growth rate
behavior possible with this model is shown in figure
9b. A (AT)~2 law will appear near and somewhat
below the melting point because of the three-dimen-
sional character of the noncoherent surface nucleus
in that region. A transition to a (A7)~! rate law
may occur if the & is fairly large. This transition
will not be abrupt.
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7.3. Noncoherent Bundlelike Growth and Spherulite
Structure

There is nothing in the present model that sug-
gests the existence of lamellae of large extent that
have a uniform step height.

If large chain ends that cannot be assimilated into
the crystal are taken to be the cause of the limitation
on lengthwise growth of each of the individual
crystallites in the coherent growth process, a large
distribution of lengths, i.e., ‘“lamellar thicknesses”
would result. The mean length of the individual
crystallites would depend on the molecular weight
and its distribution, rather than on the degree of
supercooling.  With small chain ends that can oc-
casionally enter the crystal, there is still no reason to
suspect anything but a large distribution of such
lengths, though the mean length would be larger
and in any event not be of the correct magnitude to
correspond to the thickness of a lamella. It is in
our view extremely improbable that a collection of
bodies of varying radii and length would aggregate
in such a manner as to form slabs of uniform thick-
ness with flat faces. We therefore conclude that
the asumption that chain ends limit lengthwise
growth is not consistent with the prediction of typi-
cal lamellae. Even if one considers bundlelike
crystals before such a mean “equilibrium” length is
attained, one must contend with the fact that large
bundlelike crystals will tend to be ellipsoidal in order
to minimize the total surface free energy and strain
[25, 26], and the fact they will continue to grow in
the [ direction.

If cumulative strain at the bundle ends is taken
as the cause of the cessation of coherent growth, the
“length” of the crystals might be quite uniform.
However, the existence of such strain would clearly
tend to force the individual bundlelike crystallites
to have curved end surfaces, which is inconsistent
with lamellar structure. Here again the mean length
of the ellipsoidal crystallites would not depend
strongly on the degree of supercooling.

In both of the cases mentioned above, the intro-
duction of the noncoherent nucleation step allows
the continuation of radial growth, but in no way
suggests that true lamellae could be produced from
the decidedly irregular or ellipsoidal microerystals
produced in the coherent step.

No contradiction to the concept that bundlelike
crystallization will not lead to typical lamellar strue-
tures arises when the noncoherent variations of the
special models depicted in figures 5b or 5¢ are con-
sidered. If the model illustrated in 5b were actu-
ally capable of eliminating cumulative strain (which
is by no means certain), such strain could not be the
cause of the cessation of coherent growth. The
“lamella’ would grow in the / direction as noted in
section 4.2 until chain ends stopped them, but then
they would possess a distribution of lengths as noted
previously. Alternatively, if cumulative strain were
not relieved by the tilting, each crystallite would
have curved ends, and therefore not be able to form
a lamella. The latter objection also holds for the
model shown in figure 5¢ if cumulative strain is not

relieved by tilting. If such strain is eliminated by
the tilt for 5¢, one is forced to the assumption that
unassimilable chain ends must be the ultimate limi-
tation on coherent growth, but this has already been
seen to be inconsistent with the existence of typical
lamellae. Also, the other objections to 5¢ noted in
section 4.3 still hold.

The bundlelike microcrystals will tend to melt
close to the crystallization temperature because of
the accumulated strain.

The bundlelike noncoherent growth model might
lead to a more or less spherical and semicrystalline
aggregate composed of a vast number of small
crystallites of nonuniform size.  (The introduction of
the noncoherent step involves the assumption that
suitable surfaces for such nucleation are formed by
the individual coherently grown crystals.) If such
an object is identified in some bulk polymer by
electron microscopy or other methods, it would be
reasonable to attempt to treat its radial growth with
this model. However, it would seem more appro-
priate to treat a typical lamellar spherulite in terms
of the coherent or noncoherent chain fold models.

If noncoherent nucleation is impossible because
no suitable surface is presented by the coherently
grown crystal (e.g., because of excessive curvature),
small bundlelike crystallites may appear more or
less at random in the system. These aborted struc-
tures might coexist with folded structures that were
meanwhile growing to large size.

8. Discussion
8.1. Synopsis of Radial Growth Rate Laws

The most important laws describing the rate of
radial growth of spherulites derived in this paper
may be summarized in the general form:

log, (G/Go)=—(AH*/RT)—K,|/T*(AT) (56)
[(AT)~! law]
and
log, (G/Go)=— (AH*/RT)—K,|T3*(AT)%. (57)

[(AT)~% law]

Another law was mentioned, but it is probably of
little importance and is included mainly for the sake
of completeness:

log, (G/Go) =|— (AH**+AH*)/RT|+ K3(AT).
[(AT) ! law]

(58)

A convenient summary of the rate laws as they
arise in the various models is given in table 1 for
coherent and noncoherent surface nuclei for both the
bundlelike and chain folded classes. Given also is
the best estimate of the type of “‘spherulite” that
each model implies, and the sequence of rate
transitions.

General Interpretation of Rate Laws: The (AT)*
radial growth rate law holds when the rate deter-
mining surface nucleus has no dimensions that may
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be regarded as variables in the expression for the
free energy of formation of the nucleus. The
nucleus associated with this model, which is of the
8iZ€ @min, Omin, lmin, Mmay therefore be described as
zero-dimensional.

The (A7)™* radial growth rate law bears the
general meaning that the rate determining step
involves a surface nucleus that has one fixed and
two variable dimensions.  (Such a body is commonly
called a two-dimensional surface nucleus.) This
meaning holds true for both the (A7)~ law that
appears beginning at the melting point in the
coherent growth models, and the (A7)~! law that
arises at moderate or strong supercooling for the
noncoherent growth models.

The (AT)~? radial growth rate law arises when the
rate determining step is the formation of a surface
nucleus that has three dimensions that are to be
regarded as variables in the expression that describes
the free energy of formation; such a body is com-
monly referred to as a three-dimensional surface
nucleus. In the present conception, such a nucleus
could be formed if the polymer molecules were
deposited on the polymer substrate in such a manner
that they were no longer colinear with those in the
substrate, thus forming an interface between the two
bodies. In this event, the surface nucleus takes on
the three-dimensional character of a primary nucleus
as regards temperature dependence, but is energeti-
cally preferred to the corresponding primary nucleus
by virtue of the wettability of the substrate by the
noncoherent surface nucleus. In our view, then,
the observation of a (A7)7? radial growth rate law
would not only mean that the rate determining step
was the formation of a three-dimensional surface
nucleus, but would also imply that a noncoherent
surface nucleus was involved.

FExperimental Erpectations: Tt is of interest to
indicate what the theory implies concerning the
probability that the various rate laws will be ob-
served experimentally, together with a number of
related points that may prove useful in attempting
to apply the theory.

It 1s considered highly improbable that the (A7)
rate law will be frequently encountered in experi-
mental studies. This rate law will generally be
obscured or distorted by nonsteady state nucleation
effects. 1f it did appear, it would do so at moderate
to strong supercooling where the jump rate term
would make it difficult to identify.

The (AT)7! radial growth rate law would appear
to deserve strong consideration in the analysis of
data, especially in the case of obviously lamellar
spherulites. We refer here specifically to the (A7)™!
law arising from the coherent model with chain folds.
This model is capable of predicting many of the
details of a lamellar spherulite, and coherent growth
must be regarded as a probable mechanism, partic-
ularly if there is any reason to believe that a small
and efficiently packed chain fold that is consistent
with the interior lattice structure can be formed.
On the grounds that studies on solution-grown single
crystals appear to indicate that such folds can be
formed in a number of cases, and the fact that lamellae

of considerable extension have been observed in
spherulitic bulk polymer samples, we believe that it
is reasonable to suppose that a (A7)~! radial growth
rate law arising from coherent growth with chain
folds should be found experimentally. Linear poly-
mers with no bulky side groups or effective atactic
sections are doubtless promising systems for such
studies.”” The melting behavior of a number of
spherulitic polymers seems more consistent with
coherent growth than noncoherent growth.

The coherent bundlelike model also leads to a
(AT)~* growth rate law, but we do not consider this
a likely source of such a rate law. It cannot produce
a lamellar spherulite at all. Under a variety of con-
ditions, the model does not even lead in a straight-
forward way to any kind of spherical object.

The (AT)? radial growth rate law deserves con-
sideration in the analysis of data, most particularly
in connection with the noncoherent chain fold model.
I't seems conceivable that in some polymers the chain
folds may be too bulky to allow continued coherent
growth, and in such cases it is possible that non-
coherent three-dimensional surface nuclei may form,
and constitute the rate determining step in the radial
growth mechanism. (It is to be expected that such
bulky chain folds would first induce a tilting of the
polymer chain axes with respect to the o, plane,
lamellar twist, or even a change of crystal structure
to a more open form.) If spasmodic growth of the
spherulite radius is observed near the melting point,
a (AT)7? law becomes a good possibility.

The (A7)~ law arising from the noncoherent
bundlelike model need only be considered for non-
lamellar spherulites.

It is evident that a combination of knowledge
obtained from electron and optical microscopy and
other appropriate physical methods concerning the
texture of a spherulite, together with a knowledge
of its radial growth rate law, would be very useful in
deciding in detail how these objects were formed.?

8.2. Transitions in the Radial Growth Rate

The objective of this section is to bring out some
points connected with the rate transitions that may
oceur in the radial growth rate of spherulites when
the growth rate is considered as a function of
temperature.

Two different types of rate transition have been
postulated. 1In the first, the transition is due to some
dimension of the surface nucleus approaching a
minimal value, causing a different radial growth rate
law to exist at lower temperatures (transition in
surface nucler). 'The second type of transition postu-
lated in the radial growth rate is not due to any
change in the surface growth nucleus itself; bundle
or loop type nuclei where all three dimensions are of

27 Even when present in low concentration, noncrystallizable units in a copoly-
mer must be expected to disrupt the formation of regularly folded crystals.

2 It is actually quite difficult to distinguish experimentally between the (A7)t
and (A7)-2 laws in many cases, largely because of the uncertainty in 7. The
value of AH* must not either implicitly or explicitly be set equal to zero in at-
tempting to determine the AT law. This strongly and incorrectly favors the
(AT)2 law over the (AT)-! law. Methods of determining the radial growth rate
law from data on spherulites will be discussed in detail in a forthcoming publi-
cation [35].
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minimal size appear in large numbers as a result of
nonsteady state nucleation in the surrounding
medium, and interfere with the growth of well
developed spherulites (transition in  surrounding
medium).

Transitions in Surface Nuclei: In the text, these
are denoted A’ (upper)—A’’ (lower) and A"’ (upper)
—A’”" (lower). Such transitions occur only for
noncoherent surface nuclei (see table 1). The transi-
tion is a result of the b dimension of the growth
nucleus falling to its minimal value.

If it occurs, this type of transition will not be
particularly abrupt. The theory for @ in the transi-
tion region can be worked out for some simple models.
The result is that @ is actually continuous across the
transition, provided that G, and AI* are either con-
stant with growth temperature, or smooth and con-
tinuous functions of temperature. It could happen
that AIT* or @, was different in the two regions, so
that the plot of log @ against 7' near the transition
resembled a branch point, or even exhibited a small

the rate laws cited in this paper hold at growth
temperatures somewhat removed from the transition
region.

The coherent folded nucleus model does not exhibit
this type of transition, but the noncoherent folded
nucleus model does. Therefore, if a rate transition
involving a (A7)~* law near the melting point and a
(AT)'law beginning somewhat below it is found in a
lamellar spherulite, the noncoherent model with
chain folds would be indicated. A similar situation
in a nonlamellar spherulite would point to the non-
coherent bundlelike model.

In general, the appearance of transitions due to a
dimension of a surface nucleus approaching a minimal
value is not considered very likely, with the possible
exception of the one associated with the noncoherent
folded model. If found, such transitions would pro-
vide valuable insight into the spherulitic growth
process.

Transition in  Surrounding Medium (nonsteady
state nucleation): Consideration will now be given

discontinuity. In any event, it is emphasized that | to the transition at 7, resulting from the rapid
N/ y ) P g
Tasre 1. Spherulitic growth
Model log, (G/Gy) Temperature Rate law Remarks
range
Coherent surface nucleus models #
Coherent folded nuclei b_____ _AH* _4boo. Region A, T, to | (AT)1 Predicts a typical lamellar
kT (Af)kT (s spherulite.
(two-dimensional nuecleus)
Coherent bundlelike nuelei___ AH*  4byoo, Region A/, T\, to | (AT)1 Does not lead to lamellar
kT (ANHET 1y spherulite.  Will give mi-
crocrystals scattered
(two-dimensional nucleus) throughout medium; for-
mation of spherical object
of macroscopic size doubt-
ful.
Noncoherent surface nucleus models *
Noncoherent folded nuelei b__ AH* 320(0—6/2)o, Region A’ (up- | (AT)2 Produces a modified lamel-
kT T (AT per), T to T’ lar spherulite. Radius
. . will increase spasmodically
(three-dimensional nucleus) in Region A’/ (upper).
_AH*__ 4byo o, Region A" (low- | (AT)!
kT~ (AT er), T to T..
(two-dimensional nucleus)
Noncoherent bundlelike nu- AH* 326(c—6/2)0, Region A’ (up- | (AT)~2 May lead to a microerystal-
clei. kT T (AT per), Tto T . line nonlamellar spherulite.
(three-dimensional nucleus)
_AH*  4boo, Region A’ (low- | (AT)"!
kT~ (ADKT er), T’ to T..
(two-dimensional nuecleus)

2o and o, are the lateral and end surface free energies, respectively, for folded nuclei; ¢ and o, are the corresponding

quantities for bundlelike nuclei.

The quantity (Af) is given by [(Ahr) (AT) /Ty T/ T,].

bTn the expressions for log, (G/Gy) for the folded nuclei, the edge free energy € has been set equal to zero to simplify them

(see text for complete expressions).
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ingress of loop (or bundlelike) nuclei in the medium
surrounding a spherulite that may interfere with
its growth.

It is to be expected that the 7, transition can be
relatively abrupt, occurring over a temperature
range as little as several degrees. It will be accom-
panied by a noticeable fall in ¢. A transition fitting
this general description has been found by Takaya-
nagi [1 3] in_poly(ethylene adipate) as may be seen
b\/ noting the lower transition in his figure 7. An
even more remarkable drop in the radial growth
rate of spherulites in poly(chlorotrifluoroethylene)
at 156 °C, which 1s about 65 °C below 7',, has been
found by Hoffman and Weeks [35]. Another point
of interest is that the rate of bulk crystallization, as
measured dilatometrically, should increase at 7,
even though G falls. This effect is particularly
striking in the case of poly(chlorotrifluoroethylene).

The 7, transition as such is certainly not to be
expected in radial growth rate studies in all polymers.
For many polymeric substances, o will be around 10
erg cm % and ayy, will be perhaps 10 A. Then the
T, transition would appear only at a degree of super-
cooling of about 150 °C or more il (Ak,) lies in the
usual range. This will usually be below 7', where
the radial growth rate has already been greatly
lowered by the j jump rate effect. Even if 7', is nearer
to the melting point than this, it is rather likely to
be obscured by experimental difficulties arising from
extremely rapid growth. The 7, transition is most
apt to be observed in materials where it is nearest to
the melting point, i.e., those with a low lateral
surface free energy and a large molecular diameter.

On the basis of the above remarks, the situation
where the radial growth rate is low near ]m, rises to
a maximum below T, and then falls again without
any obvious discontinuities anywhere is the one to be
most commonly expected. However, it is important
to bear in mind the possibility that Tate transitions
an occur when analyzing radial growth rate data
for polymeric systems.

Glass formation might be practically impossible,
even with the most rapid quenching, il 7', falls well
above the glass transition temperature. Then the
supercooled liquid (which would otherwise form a
glass on cooling below 7',) would tend to nucleate
and crystallize rapidly at or somewhat below 7.
At the very least, such a “glass” would contain a
large number of "“frozen in” embryos, nuclei, or
crystallites in addition to any truly amorphous
glasi\ material. The ordinary homogeneous mecha-
nism (or a heterogeneous one) could, of course, cause
crystallization to “become very I‘d])ld above TC. In
any event, the failure of many linear polymers to

easily form truly : unorphous glasses may involve the
“nucleative collapse’ effect beginning at 7,.

The basic effect that causes the 7', transition,
namely, transport of a large number of nuclei of
minimal size from the melt to the supercooled state,
:an be employed to explain certain effects associated
with prequenching on spherulitic growth. 1In the
case of the theory discussed so far, it has been
assumed that we were dealing with specimens that
were cooled directly from well above T, to the
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growth temperature, and the rate of radial growth
observed under these conditions. Suppose, how-
ever, that experiments were carried out by first
qzufn(-/uu ¢ the polymer to some low temperature, and
then observing radial growth after the specimen is
rewarmed to a certain gxowth temperature. Then at
this growth temperature, ¢ will often be lower than
if the value of ¢ had been obtained in the normal
way at the same growth temperature. Results of
this type are known, and may be ascribed to the
incursion of small nuclei during the quenching
process. The difference might be negligible if 7',
1s near or below 7',. Growth rate data obtained on
prequenched and reheated specimens should be
regarded with caution from an interpretive stand-
point, since the retardations to radial growth will
involve factors that have not been considered i
deriving the expressions for .2

8.3. Crystallization Without Chain Folds or
Spherulites

The ohjective of this section is to emphasize the
possibility that (1) ecrystallization without chain
folds may occur, and (2) that ecrystallization with
chain folds but without any obvious spherulites may
exist.

Normal Bundlelike Crystallization: In the event
that ¢,< g, for both nuclel and erystals, and assuming
that loop type structures are not initiated at hetero-
geneities, bundlelike crystallites might occur on a
considerable scale. If noncoherent surface nucleation
did not take place, the (probably ellipsoidal) crystal-
lites formed would be scattered throughout the me-
dium, i.e., no spherulites would form, but if nonco-
herent nucleation did take place, a spherical and
microcrystalline but distinetly nonlamellar “spheru-
lite” might form (see sections 4 and 7). The condi-
tion o, >a, will lead to chain folded structures, but
under certain conditions these may not bein ar adil_\'
identifiable spherulite (see below).

(n/\'ta//z zation of Oriented Polymers: Suppose it is
known for a certain polymer that when it is crystal-
lized by cooling the unoriented melt to a temperature
slightly below 7, that lamellar spherulites are
formed, and that the principal site of the crystalliza-
tion is in the spherulites. Typical lamellar spher-
ulitic erystallization frequently occurs under these
conditions. We now ask what might change this
state of affairs.

Assume now that the polymer liquid is in some
manner caused to be in a highly oriented state above
T, and that this system is then supercooled. The
possibility then exists that bundlelike rather than
loop type crystals will form. In this event, the sam-
ple would contain neither lamellae or lame llar spheru-
lites. A distinct long X-ray spacing may arise from
such bundlelike erystallites if they have a fairly uni-
form size in the / direction due to strain or other
factors. This spacing will almost certainly not vary
as 1/(AT) as will the spacings from chain folded crys-
tals formed from the unoriented melt, and care

29 Abnormally large AH* values can result for spherulitic growth taking place
in a medium that contains competing nuclei or crystallites.



should be taken not to confuse the spacings obtained
on strongly oriented and unoriented specimens. In
moderately oriented systems, chain folded and bun-
dlelike crystals may coexist.

Crystallization in Region B: Another possible source
of nonspherulitic crystallization in a polymer whose
macroscopically observable growth form at low to
moderate supercooling is of the lamellar spherulitic
type is rapid crystallization well below 7%, i.e., in
region B. This will often lead to a hierarchy of very
tiny crystallites, most so small they scatter but little
visible light. (A similar failure of well developed
spherulites to appear may be caused by the presence
of large numbers of active heterogeneous nuclei, or
a very high rate of homogeneous nucleation.) It is
reasonable to suppose that ¢,< ¢, might hold for
nuclei of minimal size even when ¢, >a, for larger
nuclei and erystals. This is implied by the concept
that cumulative strain may exist at the bundle ends.
In such a case, chain folded lamellar spherulites or
other lamellar structures would form above 7,
while many of the small crystals and embryos formed
below 7, would be bundlelike. The fine-grained crys-
tallization produced below 7', will tend to be mixed
with spherulites formed above 7, during the sub-
cooling process.

In summary, the presence (or absence) of typical
lamellar spherulites could depend on the previous
orientation of the melt, the temperature of crystal-
lization, the number of heterogeneities present, and
the ratio ¢,/0,. Conditions may exist where bundle-
like and chain folded structures occur together.

8.4. The Initiation of Spherulites in Real Systems:
Heterogeneous, Pseudohomogeneous, and Homo-
geneous Nucleation

One important reason for attempting to obtain
the homogeneous injection rate of spherulites as a
function of temperature lies in the fact that the
temperature dependence of this quantity determines
certain products involving the surface free energies
that are different from those obtained from the
radial growth rate. Thus, for a lamellar spherulite
near 7%, a knowledge of I4 as a function of tempera-
ture would allow the product ¢’c, to be determined
by eq (6) or (18). However, certain phenomena
stemming from the presence of heterogeneities can
closely imitate homogeneous injection, and lead to
“o’c,” values that are significantly low. These
effects are discussed below, partly with the objective
of indicating why the radial growth rate of spherulites,
rather than their “homogencous’ injection rate, was
stressed in the paper.

Consider first heterogeneous nucleation of spheru-
lites. Turnbull [36] has shown that if a substance
contains thermally stable (and wettable) hetero-
geneities containing pores or cavities on their surfaces,
crystalline embryos can persist in these on an equilib-
rium basis well above the melting point. Such a
body will act as a center of growth at or near ¢t=0
after the material is supercooled. The number of
such active embryos is strongly dependent on the
temperature 7 above 7, to which the system is

initially heated if a crack-size distribution exists.
By sufficient superheating, the embryos in the pores
or cavities can be melted out, thus rendering them
inactive as nucleation centers in a subsequent crystal-
lization. Turnbull’s theory shows that, other things
being equal, the embryos in the larger pores are
melted out first as 77 is increased. In cases where
the cavities are small, and where the heterogeneity
is rather strongly wetted by the crystalline phase,
the embryos may persist hundreds of degrees above
the bulk melting point.

Spherulites in many cases are well known to follow
this pattern of heterogeneous initiation. In such a
case they are all born at or near ¢t=0, and their
number per unit volume is markedly dependent on
T\—increasing 7 substantially reduces this number.
(In cases where they are born later than ¢t=0, they
tend to be born in a narrow range of times about an
induction time, 7,) It is therefore clear that
spherulite producing structures can be, and fre-
quently are, maintained in cracks or fissures in
heterogeneities.

We turn now to pseudohomogeneous nucleation of
spherulites. Heterogeneities may contain flat but
wettable regions in addition to pores or cracks. No
embryos will persist on these flat surfaces above the
bulk melting point. However, when a system con-
taining such heterogeneities is supercooled, nuclei
will preferentially appear on these flat surfaces by
virtue of the wettability of these surfaces by the
polymer crystal. If the number of heterogeneities
with flat surfaces is large, the resulting crystals can
appear in the supercooled system essentially sporadi-
cally in time instead of at ¢{=0 or t=7, Under
these conditions the crystals will appear not only
sporadically in time, but also (on a macroscopic
scale) randomly in space. For convenience we have
denoted this as “pseudohomogeneous” nucleation.
(This is the case of “heterogeneous’ nucleation dis-
cussed by Avrami [37, 38].) Sporadic birth is, of
course, also a property of crystallization in a truly
homogeneous bulk phase.

Spherulites are sometimes seen to appear nearly
sporadically in time and space in polymers. Pseudo-
homogeneous initiation should be suspected in any
sample where the number of spherulites formed per
unit volume in unit time for a given growth temper-
ature depends on 7}, or where a hierarchy of
spherulites born at =0 also appears together with
those born sporadically. Such effects indicate the
presence of mnumerous wettable heterogeneities.
Some of the studies reported in the literature, where
the polymer spherulites were believed to be of truly
homogeneous origin for the reason that they
appeared more or less sporadically in time and ran-
domly in space, may actually refer to the pseudo-
homogeneous category.

Homogeneous nucleation refers to the process
where crystallization centers are spontaneously
formed at random positions in the pure (homophase)
mother phase by thermal fluctuations. Such a
process is characterized by a rate of production of
nuclei per unit volume of mother phase that is, after
the establishment of the steady state, truly constant
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in time. In short, the nuclei appear sporadically
in time and randomly in space in the supercooled
liquid. This process will be independent of 7} for
a wide range of 7 values. True homogeneous
nucleation of a bulk phase is an ideal situation not
easily achieved experimentally in any bulk system,
heterogeneous or pseudohomogeneous nucleation
undoubtedly being much more common.

Spherulites of strictly homogeneous origin may
appear in polymers, but a proof that this is true
would be quite difficult. The following conditions
are consistent with homogeneous initiation: (a) The
spherulites appear sporadically in time with no
excess population at or near #=0; (b) the spherulites
appear at random positions in space, and show no
memory of previous position in space in successive
experiments; * (¢) further steps to rid the system of
heterogeneities (e.g., filtration, centrifugation, or
partial precipitation of solutions) do not alter the
results; and (d) the rate of injection of spherulites
is not dependent on 7.

It should be realized that true homogeneous
nucleation has rarely been achieved or proved even
with very carefully prepared specimens of ordinary
size of any bulk material. One would hardly expect
polymers to be an exception. Only work with
fogs [19] or dispersions [21], where the heterogeneous
nuclei are greatly outnumbered by the number of
particles with no adventitious centers, has heretofore
been found effective in producing conditions where
homogeneous nucleation predominated and could
be identified. Accordingly, rate ol spherulite injec-
tion data on bulk samples should not be treated using
homogeneous nuecleation theory unless there is
substantial reason to believe that the injection
mechanism was principally homogeneous. It seems
probable that a number of the “o%s,”” values quoted
in the literature on the basis of the assumption of
homogeneous nucleation in the bulk phase are too
low.

It would be of great interest to obtain reliable
o’c, values using dispersions of polymers in a manner
analogous to that wused by Turnbull for the
n-paraffins [21].

8.5. Comment on Alternative Theory of Step Height

An alternative theory for the existence of a “step
height”” in polymer crystals has been advanced by
Peterlin and Fischer [39]. They propose that the
length (“step height”’) of a polymer crystal is limited
because the longitudinal lattice vibrations become
incoherent, and raise the free energy of the crystal
if its gets too long. The “step height” of lamellae
is thus believed by these authors to exist because of
equilibrium considerations. They predict that the
step height decreases with lowering temperature.

Entirely apart from the question of whether or not
such a concept is correct in principle, the following
comments are relevant: (1) The Peterlin-Fischer
theory does not predict, or even in the mode analysis
take account of, the existence of chain folds in bulk

¥ In polymers, retained orientation might create memory effects, but it should
be possible to eliminate these by storing the samples above T, for a time.

or in dilute solution. (2) To the extent that their
work may be interpreted as referring to the bundle-
like system with chains normal to the bundle ends,
the objection illustrated in figure 5a applies to the
prediction of bundlelike “lamellae” of large dimen-
sions. (3) Since the “step height’ is a phenomenon
based on equilibrium considerations in the Peterlin-
Fischer theory, it should depend on the ambient
temperature rather than the growth temperature,
the latter being the case for the theory presented in
this paper. There is no evidence suggesting, for
example, that the lamellae in bulk become thinner
with lowering ambient temperature.®" It is our con-
clusion that if the limitation on length proposed by
Peterlin and Fischer exists, it evidently refers to a
much larger dimension than the step height of a
lamella.

The theory presented here and in an earlier paper
shows how chain folded crystals can come into being,
and provides a reasonably detailed picture of the
properties of systems crystallizing in this pattern.

*9. Summary and Conclusions

We now give a brief summary of some major points
that have been brought out concerning spherulitic
crystallization in bulk polymers.

It was demonstrated that if one assumes that the
end surface free energy of a bundlelike nucleus is
larger than the corresponding quantity for a folded
nucleus, i.e., o, >a,, then homogeneous nucleation of
chain folded structures will prevail in bulk. It was
noted that heterogeneous nucleation is much more
probable in real polymer systems, but that if ¢, >a,,
this type of nucleation will in all likelihood still
initiate chain folded structures in bulk. It was then
shown that coherent surface nucleation with chain
folds will lead to structures possessing a considerable
number of physical features commonly associated
with lamellar spherulites. (The chain folded mode
of crystal growth is highly probable if ¢, >o,, and
coherent nucleation is feasible if the folds are such
that they do not lead to cumulative strain in the fold
plane.) It was also indicated that the assumption of
noncoherent nucleation with chain folds could pro-
duce a modified lamellar spherulite. In each case,
emphasis was placed on predicting the radial growth
rate of the spherulite as a function of the crystalliza-
tion temperature. This property follows a different
law for coherent and noncoherent growth, and a
differentiation of the two is amenable to careful

31 Experiments aimed at differentiating between the ‘“‘equilibrium’ theory of
Peterlin and Fischer, where the step height is a function of ambient temperature,
and the “kinetic’ theory presented in this paper, where the step height is a
function of the growth temperature, must be carried out and interpreted with
caution. For example, if a lamella with a certain step height in bulk is warmed,
it will melt, and if kinetics permit, recrystallize at a new and larger step height
(sec. 5.2). This must not be mistaken for an “equilibrium‘ increase in step
height. Experiments conducted by lowering the temperature after crystalliza-
tion are free of this objection provided no additional erystallization of supercooled
liquid polymer take place at the lower temperatures, thus introducing thinner
lamellae. Studies of the changes of step height of chain folded lamellae in dilute
solution are of problematical value in this connection. They may show an in-
crease of step height on warming due to melting followed by recyystalhzation.
If the solubility is finite, thin lamellae will form from thicker ones in dilute solu-
tion on lowering the temperature. Neither of these effects in dilute solution may
be interpreted as supporting the “equilibrium” theory. In some polymers, a
slow increase of step height due to internal diffusion mechanisms in the erystal
may take place, and further complicate matters. However, as noted in section

5.2, such a diffusion mechanism is distinguished by the fact it can take place
isothermally at the original crystallization temperature.
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experiment. Also, the behavior of the step height
of a chain folded lamella in bulk was discussed.
This included the step height as a function of
growth temperature, the behavior on rewarming
(melting, recrystallization), and the uniformity of the
step height. The predictions given are mostly
subject to experimental verification, and some are
known to be at least qualitatively correct. It is
highly significant that a kinetic theory of crystal
growth, wherein a nucleus length maintains itself
during growth because of chain folds, can reproduce
so many of the known features of spherulitic crystalli-
zation in bulk.

Given the basic lamellar structure produced by the
kinetic crystal growth theory with chain folds, it
was shown how surface stress could cause the lamellae
to warp or twist. A slight and noncumulative repul-
sion of the chain folds in the o, plane is sufficient to
create the required type of surface stress. Others
have previously shown that such twist can explain
many aspects of the optical extinction patterns of
spherulites, most particularly the complex rings that
are often seen with a polarizing microscope.

An effort was made to indicate the nature of the
reasons that ¢, might exceed o,. It was concluded
that the value of ¢, will be considerably larger than
had been supposed heretofore, because of the fact
that a bundlelike nucleus clearly must possess a
density gradient of considerable size at the bundle
ends: calculations with a simple model were given
showing that even the minimal value of ¢, would be
quite large because of the work required to construct
this density gradient region. When considered to-
gether with the theoretical and experimental esti-
mates for o, the result is that it is certainly not
implausible to suppose that ¢, >, at least in some
situations. In the one specific case that was con-
sidered (polyethylene), it was clear enough that this
condition might indeed apply. If ¢, >a, for a poly-
mer, chain folded growth is to be regarded as an
intrinsic mode of crystallization in the bulk phase.

Certain circumstances were mentioned whereby
chain folded structures might be prevalent, though
in competition with numerous small bundlelike
crystallites, in a bulk polymer even if ¢,< o, (poison-
ing of growth of extended bundlelike structures by
cumulative strain or large chain ends; heterogeneous
nucleation with special interactions). In sufficiently
dilute solution, chain folded platelets will form, no
matter whether ¢, >0, or ¢,<o,, because of entropy
considerations.

Assuming that the condition o, >o, does exist,
at least for fairly large crystals, we regard the most
probable cause of this condition to be cumulative or
noncumulative strain at the ends of the bundlelike
nucleus or crystal. Such strain arises ultimately
from the fact that for a bundlelike system, the
crystal and liquid phases are “connected” through
covalent bonds, a situation that does not occur to a
significant extent in the folded system. Again we
emphasize the fact that the condition ¢, >a, virtually
assures the predominance of the chain folded growth
mechanism, whatever the type of initiation.

Considerable attention was directed toward a
critical examination of whether the classical bundle-
like model of polymer crystal growth, or certain
variations of it, could lead to a lamellar spherulite.
It was concluded that this was highly improbable.

In general, the bundlelike models suffered one or
more of the following drawbacks: (1) The bundlelike
nucleus with noncumulative strain is found to grow
in the polymer chain direction, thus destroying any
semblance of the stability or uniformity of the step
height as observed experimentally in spherulites.
(2) Bundlelike crystallites will have a tendency to
exhibit rounded ends because of considerations based
on strain or minimization of total surface free energy,
or both, and this is not consistent with the existence
of lamellae with large and flat otype faces. The
bundlelike nucleus with cumulative strain will not
grow to large size, and will definitely have rounded
ends. (3) The assumption that the exclusion of
large chain ends from the erystal ultimately causes
the cessation of lengthwise growth of the bundles
(on an equilibrium basis) leads to a wide distribution
of crystallite lengths that is not consistent with
either the uniform thickness, or the surface smooth-
ness of a typical lamella. (4) The tipping of polymer
crystals at low draw ratios is not readily understood
in terms of bundlelike crystals. (5) It seems im-
probable that assemblies of strictly bundlelike
“lamellae’” would cleave along the required planes.

The deficiencies of the bundlelike models, as con-
trasted with the ability of the chain fold models to
reproduce many of the significant structural feaures
of lamellar spherulites, leads to the conclusion that
it is highly probable that lamellar spherulites formed
in bulk consist of structures that are built on a
basically chain folded pattern.

To this it must be added that some bundlelike
character, in the form of interlamellar links, or
chains protruding from the fold plane, must be ex-
pected in lamellar spherulites. Further, the exist-
ence of a microcrystalline but nonlamellar spherulite
built on the bundlelike pattern by noncoherent
nucleation is by no means excluded. Therefore, the
possiblilty exists that there is more than one basic
scheme for the construction of spherulites in bulk
despite the evidence that a number that have been
arefully studied are lamellar.

Finally, some limitations that may exist on spher-
ulitic growth with chain folds were noted. Exclu-
sion of chain ends from the crystal for reasons of
large size may hinder fold formation at low super-
cooling where the step height is large. At high
supercooling, nonsteady state nucleation may occur
in the medium surrounding a spherulite, and seriously
hinder its growth.

10. Appendix: Simplified Density Gradient
Model of the Primary Bundlelike Nucleus

Density  Gradient Model: The treatment given
below is not represented as a rigorous or complete
solution of the problem of the bundlelike nucleus
with a density gradient at the bundle ends. Our
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Density gradient model of the primary bundlelike
nucleus.

Ficure _10.

(a) Schul;lznic diagram of model showing dimensions and coordinates.
(b) Duqsxty, lateral surface free energy, entropy, and heat content as a function
of length in the density gradient region at a bundle end.

intention in presenting the treatment below is to
illuminate with a simple example some of the factors
that might contribute to o,.

Consider a bundlelike nucleus with a middle
section of mnormal crystal density p. and lateral
surface free energy o, which has length /, and radius
7. In addition, the nucleus has two diffuse bundle
ends where the density gradually falls off from p, to
ps, the latter being the density of the supercooled
liquid. Call the radius of the diffuse end 7, and let
the total length of the nucleus be /,-+4,. ILet the /
coordinate be zero at the center of the nucleus.
Then the normal crystalline section of density p,
extends from zero to [;/2, and the diffuse section,
where the density falls to p,, extends from //2 to
(li+16) 2. (See fig. 10a.)

For this model, the free energy of formation may
be approximated as

Ap=2mrl o+ 4mrW+27r*W,—=r2l, (Af), (A-1)
where
3(Litly)
W= a(p)dl (A-2)

and

AL (p)dl. (A-3)

Here o(p) is the lateral surface free energy as a
function of density in the diffuse end region, and
AF(p) the free energy of formation as a function of
density in the same region.

2mrl, is the work required to form the lateral
surface of the normal crystalline section of length
[y, and 47 W, is the work required to form the lateral
surface of both diffuse ends. The quantity o(p) will
be equal to ¢ at /2, and zero at (/,+5)/2. W, will
have a positive value, and not depend strongly on
temperature.

2w W, represents the free energy of formation of
the two diffuse bundle ends. This will contain some
negative contributions, since AF(p) is equal to
—(Af) at /2, and zero at (/;-+1)/2. However,
AF(p) will be positive for a certain range of / values
between these limits, causing the net value of W, to
be positive. W, may depend on temperature to
some extent.

The model does not explicitly treat cumulative
strain caused by radial growth. To do so would
greatly complicate the model.

By the usual methods one finds 7*=2¢/(Af) and
lF=2W,/c+4W,/Af. On substitution of these in
eq (A—1), there 1s obtained.

SeW.o  Swa?W,

I a4

Ap*=

Hence, the homogeneous nucleation rate is,

s '_A_IT_“ ) <__ 811'W10> - <_ Swa?W, )
- 00“1’( kT)"“P @ankT) P\ @an%T
(A-5)

The (A7)~! term involving W, will in some cases be
nearly cancelled by components of opposite sign
arising from W, (see below). In any event, eq
(A-5) will lead to a (AT)~2 nucleation rate behavior
sufficiently near 77,.

Comparison, With Sharp Boundary Model: The
corresponding cylindrical bundlelike model with o,
treated as a single constant representing the surface
free energy as if it were concentrated at an abrupt
phase boundary has the free energy of formation

Ap=2mrlio-+2mr20,—mr3ly (Af), (A-6)

which leads to
x_ Smo’a, _7
A= &

and

AT Sro'a,
I=1I, exp <——k7> oxp (- - > (A-8)
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Except for unimportant differences in geometry,
eqs (A-6) and (A-8) are analogous to eqs (4) and (6)
or (18) of the text.

Comparison of eqs (A-4) and (A-7) show that

(ANW,

O :Ilye—*-'T- (A*Q)

A similar result is obtained if the parallelepiped
geometry is used to treat the bundlelike density
gradient model. Therefore, to the approximations
inherent in eq (A-1), the above expression may be
regarded as showing some of the factors that con-
tribute to the effective value of ¢, for the bundlelike
nucleus treated as if it had a sharp phase boundary
at the bundle ends.

Application: A highly approximate but neverthe-
less instructive application of the density gradient
model will now be given. The objective is to cal-
culate ¢, as given by eq (A-9) in terms of the appro-
priate quantities. This requires that W, and W, be
evaluated.

In order to calculate W,, some assumptions must
be made concerning AF(p). A crude model will
suffice for the purpose of illustrating what contributes
to W..

Begin by assuming that, at constant temperature,
the entropy as a function of density in the diffuse
bundle end has the form (po/p), where ) is a
positive constant in the units erg deg™' em—3, p; a
reference density (p;+p.)/2, and p the density
characteristic of some value / in the bundle end.
No claim is made that this is exactly the relationship
between entropy and density. However, the pro-
posed expression does lead to an increase in entropy
with a decrease in density, corresponding to the
increase of entropy that must occur as a path is
traversed from p=p, at /,/2 at the normal crystal,
out through the increasingly disordered bundle end
to p=p; at (,;+4)/2. From the proposed empirical
function we see that

S—8=88()=Com (5=} (A-10)
P P

Assume further that the heat content as a function
of density in the bundle ends is of the form (% (p/p,) -+
Cs(po/p).  Then

H—Hz:AHu):“(%"—Mczpo (pl—%) (A-11)

The constants (%, and (; are in erg ecm~®. This
function is proposed with the express intent of
causing a maximum to exist in AH(p) as one goes
from [,/2, where p=p, and H=FH,, out through the
bundle end to (/,-+/,)/2, where p=p, and H=IH,.
(Both (), and C; must have positive values to give
this maximum.) This maximum, whose magnitude
is related to (; and T' (see below), may be considered
to result from noncumulative volume strain (repul-
sions or abnormal separations, of the chain segments)
in the bundle end. The maximum in AH(p) in

turn contributes to a maximum in AF(p) whose
height depends on O (or T'). This mazimum in the

free energy must exist in the surface region in order to

cause phase separation. (There is a small maximum
in AF(p) even if (;—=0.) No assertion is made that
eq (A-11) is an accurate representation of the heat
content as a function of density in the bundle end;
it is merely an empirical function meeting certain
boundary conditions and other physical require-
ments of the problem at hand.

Accordingly, the free energy //—F;in the boundary
region is

L /11
e =AY (P):'Ll;lo“e‘)‘}‘(/:spo (E“;)

~TOw(5—)- (A-12)
P P
Applying the conditions F;— F.=Ah (T, —T)/Ty,

and F,—F.=0 at T,, one finds C,=(Ahs/pT),)
(pepi/Apy) and  Cy=pj(Cs+ T, Ch) [peps, where Ap=

pe—p;. This gives
. 1 1 p 1 AhchPz
F—F=p,Cs5| —+—————= |+77~
e 3[pc+Pl pepi p]+Tm(Ap)
T, Z_Z_M]. (A-13)
Pe  P1 P PPl

The expression for W, may be written

W,= f C(F—F) fili dp- (A-14)
Pc P

Assuming that the density falls off linearly with / in
the density gradient region, dl/dp=—1,/(Ap), where
l; is the length of the gradient region at one of the
bundle ends. Carrying out the integration and ex-

. 1 1
pandingIn(p./p:) as (Ap/p1) ——Z-(Ap/pz)2+3§(Ap/pz)3— has
the result is

W _&(Ap)z

: Ahfp Pec ld(pc/P l) (Af)
= 6at0, LWOT ]~ E

(Ap)
(A-15)

Both of the terms in the brackets make positive
contributions to W,, since C; is positive. In ar-
riving at (A-15) it was assumed that terms in-
volving (Ap/p)* could be neglected.

The behavior of W, may now be examined.
Assuming that o(p) falls off linearly from o at p. to

zero at p; as

w=le. (A-17)

(A-16)

one gets
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Combining (A-15) and (A-17) according to (A-9)
we get

]d(AP)

6pip,

(Ahf)P WPe |
(Ap)

A term [l4(Af)/2](1—p./p:) has been omitted from eq
(A—18) since it is too small to be of any consequence
in this case. In other instances, however, the term
involving (Af) could be larger.

The nature of the various thermodynamic func-
tions in the end surface region are shown schemati-
cally in figure 10b as a function of the distance
traversed out through the bundle end. These were
converted from o(p), AH(p) and AS(p) by assuming
p is a linear function of /.

For (;=0, which corresponds to a monotonic in-
crease of heat content in the bundle ends, it is seen
that o,=1,(Ahs)(Ap)/6p;. This comes to roughly 9
erg em~* for the particular example relating to poly-

ethylene cited in section 2.2. However, it is clear
on physical grounds that the heat content must
possess at least a flat maximum in the boundary
region corresponding to a nonzero value of ;.  Con-
sideration of this leads to a larger and more realistic
minimum value of o,.

In a system where each molecule is forced to
participate in the crystal and liquid (or supercooled
liquid) phases, as is the case at the end of a bundle-
like nucleus or crystal in a polymer, we consider it
highly probable that the heat content at some
point in the surface phase must be even higher than
1t 1s in the liquid. This effect may be taken to be a
result of the volume strain that must occur in such
situations. (The above remarks refer to nuclei of
substantial size, say with a radius of 50 A or more,
where density differences between the liquid and
crystal will become effective. The volume strain
effect would tend to be unimportant if only three or
four chains were involved. The model is in any case
not valid for such small radii.)

Consider now the value of (5 that will lead to a
maximum in AH (p) between /,/2 and (L -+05)/2. 1t is
easily shown that (3 must be larger than (Ah))
pipc/po(Ap)? In order that this maximum exist.*
Therefore we may write

(/73_ (Ahf)plpc

P(i(/ys + (A"l 8)

r A-19
PO(AP)2 “polBp)? T ( )
where I'=0. Hence, from (A-18) and (A-19), one
gets
o_(}:{(](A‘hf)pc ld(A.pzzpﬂr‘. (A_Q())
6p; 6pip.

The quantity I' is in erg em™®. The case I'=0
corresponds to that where there is no maximum in
AH (p). This in turn corresponds to the smallest
maximum in AF(p), and therefore the smallest
value of ¢,, that is physically realistic according to
the model. Actual values of ¢, would almost
certainly involve T' 0.

32 The maximum in AH (p) oceurs at p?nu:plpe/[l + (Ahf)pepe/mCs3(Ap)]. Since

pgmuiplz, the condition noted follows.
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The particular model treated above does not lead
to a large temperature dependence of ¢,, though the
term  (Ap)? will fall with lowering temperature.
However, there are a number of reasons for expecting
o, to depend somewhat more on temperature in the
more general case. For example, the residual term
involving (Af) that practically cancelled in eq (A-18)
may be larger if other assumptions concerning
AF(p), a(p), and dl/dp are used.
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