
1. Introduction
1.1 Background

In this paper we will overview electromagnetic inter-
actions with solid and liquid dielectric and magnetic
materials from the macroscale down to the nanoscale.
We will concentrate our effort on radio-frequency (RF)
waves that include microwaves (MW) and millimeter-
waves (MMW), as shown in Table 1. Radio frequency
waves encompass frequencies from 3 kHz to 300 GHz.
Microwaves encompass frequencies from 300 MHz to
30 GHz. Extremely high-frequency waves (EHF) and
millimeter waves range from 30 GHz to 300 GHz.

Many devices operate through the interaction of RF
electromagnetic waves with materials. The characteri-
zation of the interface and interaction between fields
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Table 1. Radio-Frequency Bands [1]

frequency wavelength band

3 – 30 kHz 100 – 10 km VLF
30 – 300 kHz 10 – 1 km LF
0.3 – 3 MHz 1 – 0.1 km MF

3 – 30 MHz 100 – 10 m HF
30 – 300 MHz 10 – 1 m VHF

300 – 3000 MHz 100 – 10 cm UHF
3 – 30 GHz 10 – 1 cm SHF

30 – 300 GHz 10 – 1 mm EHF
300 – 3000 GHz 1 – 0.1 mm THz
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and materials is a critical task in any electromagnetic
(EM) device or measurement instrument development,
from nanoscale to larger scales. Electromagnetic waves
in the radio-frequency range have unique properties.
These attributes include the ability to travel in guided-
wave structures, the ability of antennas to launch waves
that carry information over long distances, possess
measurable phase and magnitude, the capability for
imaging and memory storage, dielectric heating, and
the ability to penetrate materials.

Some of the applications we will study are related to
areas in microelectronics, bioelectromagnetics, home-
land security, nanoscale and macroscale probing,
magnetic memories, dielectric nondestructive sensing,
radiometry, dielectric heating, and microwave-assisted
chemistry. For nanoscale devices the RF wavelengths
are much larger than the device. In many other applica-
tions the feature size may be comparable or larger than
the wavelength of the applied field.

We will begin with an introduction of the interaction
of fields with materials and then overview the basic
notations and definitions of EM quantities, then
progress into dielectric and magnetic response, defini-
tions of permittivity and permeability, fields, relaxation
times, surfaces waves, artificial materials, dielectric 
and magnetic heating, nanoscale interactions, and field
fluctuations. The paper ends with an overview of
biomaterials in EM fields and metrologic issues.
Because this area is very broad, we limit our analysis to
emphasize solid and liquid dielectrics over magnetic
materials, higher frequencies over low frequencies,
and classical over quantum-mechanical descriptions.
Limited space will be used to overview electrostatic
fields, radiative fields, and terahertz interactions. There
is minimal discussion of EM interactions with non-
linear materials and gases.

1.2 Electromagnetic Interactions From the
Microscale to Macroscale

In this section we want to briefly discuss electromag-
netic interaction with materials on the microscale to the
macroscale.

Matter is modeled as being composed of many
uncharged and charged particles including for example,
protons, electrons, and ions. On the other hand, the
electromagnetic field is composed of photons. The
internal electric field in a material is related to the sum
of the fields from all of the charged particles plus
any applied field. When particles such as biological

molecules, cells, or inorganic materials are subjected to
external electric fields, the molecules can respond in a
number of ways. For example, a single charged particle
will experience a force in an applied electric field. Also,
in response to electric fields, the charges in a neutral
many-body particle may separate to form induced
dipole moments, which tend to align in the field; how-
ever this alignment is in competition with thermal
effects. Particles that have permanent dipole moments
will interact with applied dc or high-frequency fields.
In an electric field, particles with permanent dipole-
moments will tend to align due to the electrical torque,
but in competition to thermal randomizing effects.
When EM fields are applied to elongated particles with
mobile charges, they tend to align in the field. If the
field is nonuniform, the particle may experience dielec-
trophoresis forces due to field gradients.

On the microscopic level we know that the electro-
magnetic field is modeled as a collection of photons
[2]. In theory, the electromagnetic field interactions
with matter may be modeled on a microscopic scale by
solving Schrödinger’s equation, but generally other
approximate approaches are used. At larger scales the
interaction with materials is modeled by macroscopic
Maxwell’s equations together with constitutive rela-
tions and boundary conditions. At a courser level of
description, phenomenological and circuit models are
commonly used. Typical scales of various objects are
shown in Fig. 1. The mesoscopic scale is where
classical analysis begins to be modified by quantum
mechanics and is a particularly difficult area to model.

The interaction of the radiation field with atoms
is described by quantum electrodynamics. From a
quantum-mechanical viewpoint the radiation field is
quantized, with the energy of a photon of angular
frequency ω being E = ω. Photons exhibit wave-
duality and quantization. This quantization also occurs
in mechanical behavior where lattice vibrational
motion is quantized into phonons. Commonly, an atom
is modeled as a harmonic oscillator that absorbs or
emits photons. The field is also quantized, and each
field mode is represented as a harmonic oscillator and
the photon is the quantum particle.

The radiation field is usually assumed to contain a
distribution of various photon frequencies. When the
radiation field interacts with atoms at the appropriate
frequency, there can be absorption or emission of
photons. When an atom emits a photon, the energy of
the atom decreases, but then the field energy increases.
Rigorous studies of the interaction of the molecular
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field with the radiation field involve quantization of the
radiation field by expressing the potential energy
V(r) and vector potential A(r, t) in terms of creation and
annihilation operators and using these fields in the
Hamiltonian, which is then used in the Schrödinger
equation to obtain the wavefunction (see, for example,
[3]). The static electromagnetic field is sometimes
modeled by virtual photons that can exist for the short
periods allowed by the uncertainty principle. Photons
can interact by depositing all their energy in photo-
electric electron interactions, by Compton scattering
processes, where they deposit only a portion of the
energy together with a scattered photon, or by pair
production. When a photon collides with an electron it
deposits its kinetic energy into the surrounding matter
as it moves through the material. Light scattering is a
result of changes in the media caused by the incoming
electromagnetic waves [4]. In Rayleigh elastic light
scattering, the photons of the scattered incident light
are used for imaging material features. Brillouin
scattering is an inelastic collision that may form or
annihilate quasiparticles such as phonons, plasmons,
and magnons. Plasmons relate to plasma oscillations,
often in metals, that mimic a particle and magnons are
the quanta in spin waves. Brillouin scattering occurs
when the frequency of the scattered light shifts in
relation to the incident field. This energy shift  relates

to the energy of the interacting quasiparticles. Brillouin
scattering can be used to probe mesoscopic properties
such as elasticity. Raman scattering is an inelastic
process similar to Brillouin scattering, but where the
scattering is due to molecular or atomic-level transi-
tions. Raman scattering can be used to probe chemical
and molecular structure. Surface-enhanced Raman
scattering (SERS) is due to enhancement of the EM
field by surface-wave excitation [5].

Optically transparent materials such as glass have
atoms with bound electrons whose absorption frequen-
cies are not in the visible spectrum and, therefore, inci-
dent light is transmitted through the material. Metallic
materials contain free electrons that have a distribution
of resonant frequencies that either absorb incoming
light or reflect it. Materials that are absorbing in one
frequency band may be transparent in another band.

Polarization in atoms and molecules can be due to
permanent electric moments or induced moments
caused by the applied field, and spins or spin moments.
The response of induced polarization is usually weaker
than that of permanent polarization, because the typical
radii of atoms are on the order of 0.1 nm. On applica-
tion of a strong external electric field, the electron
cloud will displace the bound electrons only about
10–16 m. This is a consequence of the fact that the
atomic electric fields in the atom are very intense,
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Fig. 1. Scales of objects.
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approximately 1011 V/m. The splitting of spectral lines
due to the interaction of electric fields with atoms and
molecules is called the Stark effect. The Stark effect
occurs when interaction of the electric-dipole moment
of molecules interacts with an applied electric field that
changes the potential energy and promotes rotation and
atomic transitions. Because the rotation of the mole-
cules depends on the frequency of the applied field, the
Stark effect depends on both the frequency and field
strength. The interaction of magnetic fields with molec-
ular dipole moments is called the Zeeman effect. Both
the Stark and Zeeman effects have fine-structure modi-
fications that depend on the molecule’s angular
momentum and spin. On a mesoscopic scale, the inter-
actions are summarized in the Hamiltonian that con-
tains the internal energy of the lattice, electric and mag-
netic dipole moments, and the applied fields.

In modeling EM interactions at macroscopic scales,
a homogenization process is usually applied and the
classical Maxwell field is treated as an average of the
photon field. There also is a homogenization process
that is used in deriving the macroscopic Maxwell
equations from the microscopic Maxwell equations.
The macroscopic Maxwell’s equations in materials are
formed by averaging the microscopic equations over a
unit cell. In this averaging procedure, the macroscopic
charge and current densities, the magnetic field H, the
magnetization M, the displacement field D, and the
electric polarization field P are formed. At these scales,
the molecule dipole moments are averaged over a unit
cell to form continuous dielectric and magnetic polar-
izations P and M. The constitutive relations for the
polarization and magnetization are used to define the
permittivity and permeability. At macroscopic to meso-
scopic scales the permittivity, permeability, refractive
index, and impedance are used to model the response of
materials to applied fields. We will discuss this in detail
in Sec. 4.5. Quantities such as permittivity, permeabili-
ty, refractive index, and wave impedance are not micro-
scopic quantities, but are defined through an averaging
procedure. This averaging works well when the wave-
length is much larger than the size of the molecules or
atoms and when there are a large number of molecules.
In theoretical formulations for small scales and wave-
lengths near molecular dimensions, the dipole moment
and polarizability tensor of atoms and molecules can be
used rather than the permittivity or permeability. In some
materials, such as magnetoelectric and chiral materials,
there is a coupling between the electric and magnetic
responses. In such cases the time-harmonic constitutive

relations are B
~

(ω) = μH
~

(ω) + η1 E
~

(ω) and D
~

(ω) =
εE

~
(ω) + η2 H

~
(ω). In most materials the constitutive

relations B
~

(ω) = μ 0 (M
~

(ω) + H
~

(ω)) and D
~

(ω) =
ε0 E

~
(ω) + P

~
(ω) are used.

In any complex lossy system, energy is converted
from one form to another, such as the transformation of
EM energy to lattice kinetic energy and thermal energy
through photon-phonon interactions. Some of the
energy in the applied fields that interact with materials
is transfered into thermal energy as infrared phonons.
In a waveguide, there is a constant exchange of energy
between the charge in the guiding conductors and the
fields [6].

When the electromagnetic field interacts with mate-
rial degrees of freedom, a collective response may be
generated. The term polariton relates to bosonic quasi-
particles resulting from the coupling of EM photons or
waves with an electric or magnetic dipole-carrying
excitation [4, 5]. The resonant and nonresonant
coupling of EM fields in phonon scattering is mediated
through the phonon-polariton transverse-wave quasi-
particle. Phonon polaritons are formed from photons
interacting with terahertz to optical phonons.
Ensembles of electrons in metals form plasmas and
high-frequency fields applied to these electron gases
produce resonant quasi-particles, commonly called
plasmons. Plasmons are a collective excitation of a
group of electrons or ions that simultaneously oscillate
in the field. An example of a plasmon is the resonant
oscillation of free electrons in metals and semiconduc-
tors in response to an applied high-frequency field.
Plasmons may also form at the interface of a dielectric
and a metal and travel as a surface wave with most of
the EM energy confined to the low-loss dielectric. A
surface plasmon polariton is the coupling of a photon
with surface plasmons. Whereas transverse plasmons
can couple to an EM field directly, longitudinal
plasmons couple to the EM field by secondary particle
collisions. In the microwave and millimeter wave
bands artificial structures can be machined in metallic
surfaces to produce plasmons-like excitations due to
geometry. Magnetic coupling is mediated through
magnons and spin waves. A magnon is a quantum of a
spin wave that travels through a spin lattice. A polaron
is an excitation caused by a polarized electron traveling
through a material together with the resultant polariza-
tion of adjacent dipoles and lattice distortion [4]. All of
these effects are manifest at the mesoscale through
macroscale in the constitutive relations and the result-
ant permittivity and permeability.
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1.3 Responses to Applied RF Fields

If we immerse a specimen in an applied field and the
response is recorded by a measurement device, the data
obtained are usually in terms of a digital readout or a
needle deflection indicating the phase and magnitude of
a voltage or current, a difference in voltage and
current, power, force, temperature, or an interference
fringe. For example, we deduce electric and magnetic
field strengths and phase through Ampere’s and
Faraday’s laws by means of voltage and current
measurements. The scattering parameters measured on
a network analyzer relates to the phase and magnitude
of a voltage wave. The detection of a photon’s energy is
sensed by an electron cascade current. Cavities and
microwave evanescent probes sense material character-
istics through shifts in resonance frequency from the
influence of the specimen under test. The shift in reso-
nance frequency is again determined by voltage and
power measurements on a network analyzer. Magnetic
interactions are also determined through measurements
of current and voltage or forces [4, 7-9]. These measure-
ment results are usually used with theoretical models,
such as Maxwell’s equations, circuit parameters, or the
Drude model, to obtain material properties.

High-frequency electrical responses include the meas-
urement of the phase and magnitude of guided waves in
transmission lines, fields from antennas, resonant fre-
quencies and quality factors (Q) of cavities or dielectric
resonators, voltage waves, movement of charge or spin,
temperature changes, or forces on charge or spins. These
responses are then combined through theoretical models
to obtain approximations to important fundamental
quantities such as: power, impedance, capacitance,
inductance, conductance, resistance, conductivity, resis-
tivity, dipole and spin moments, permittivity, and perme-
ability, resonance frequency, Q, antenna gain, and near-
field response [10-16].

The homogenization procedure used to obtain the
macroscopic Maxwell equations from the microscopic
Maxwell equations is accomplished by averaging the
molecular dipole moments within a unit cell and con-
structing an averaged continuous charge density func-
tion. Then a Taylor series expansion of the averaged
charge density is performed, and, as a consequence, it
is possible to define the averaged polarization vector.
The spatial requirement for the validity of this averag-
ing is that the wavelength must be much larger than the
unit cell dimensions (see Sec. 4.6 ). According to this
analysis, the permittivity of an ensemble of molecules
is valid for applied field wavelengths that are much
larger than the dimensions of an ensemble of molecules

or lattice, assuming one can isolate the effects of the
molecules from the measurement apparatus. This
metrology is not always easy because a measurement
contains effects of electrodes, probes, and other
environmental factors. The concepts of atomic polariz-
ability and dipole molecular moment are valid on a
smaller scale than are permittivity and permeability.

In the absence of an applied field, small random
voltages with a zero mean are produced by equilibrium
thermal fluctuations of random charge motion [17].
Fluctuations of these random voltages create electrical
noise power in circuits. Analogously, spin noise is due
to spin fluctuations. Quasi-monochromatic surface
waves can also be excited by random thermal fluctua-
tions. These surface waves are different from black-
body radiation [18]. Various interesting effects are
achieved by random fields interacting with surfaces.
For example, surface waves on two closely spaced
surfaces can cause an enhanced radiative transfer.
Noise in nonequilibrium systems is becoming more
important in nanoscale measurements and in systems
where the temperatures vary in time. The information
obtained from radiometry at a large scale, or micro-
scopic probing of thermal fluctuations of various
material quantities, can produce an abundance of infor-
mation on the systems under test.

1.4 RF Measurements at Various Scales

At RF frequencies the wavelengths are much larger
than molecular dimensions. There are various approach-
es to obtaining material response with long wavelength
fields to study small-scale particles or systems. These
methods may use very sensitive detectors, such as
single-charge or spin detectors or amplifiers, or average
the response over an ensemble of particles to obtain a
collective response. To make progress in the area of
mesoscale measurement, detector sensitivity may need
to exceed the three or four significant digits obtained
from network analyzer scattering parameter measure-
ments, or one must use large ensembles of cells for a
bulk response and infer the small-scale response.
Increased sensitivity may be obtained by using resonant
methods or evanescent fields.

Material properties such as collective polarization
and loss [19] are commonly obtained by immersing
materials in the fields of EM cavities, dielectric
resonators, free-space methods, or transmission lines.
Some responses relate to intrinsic resonances in a
material, such as polariton or plasmon response,
ferromagnetic and anti-ferromagnetic resonances, and
terahertz molecular resonances.
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Broadband response is usually obtained by use of
transmission lines or antenna-based systems [12-14,
19, 20]. Thin films are commonly measured with
coplanar waveguides or microstrips [14]. Common
methods used to measure material properties at small
scales include near-field probes, micro-transmission
lines, atomic-force microscopes, and lenses.

In strong fields, biological cells may rotate, deform,
or be destroyed [21]. In addition, when there is more
than one particle in the applied field, the fields between
the particles can be modified by the presence of
nearby particles. In a study by Friend et al. [22], the
response of an amoeba to an applied field was studied
in a capacitor at various voltages, power, and frequen-
cies. They found that at 1 kHz and at 10 V/cm the
amoeba oriented perpendicular to the field. At around
10 kHz and above 15 V/cm the amoeba’s internal
membrane started to fail. Above 100 kHz and a field
strength of above 50 V/cm, thermal effects started to
damage the cells.

1.5 Electromagnetic Measurement Problems
Unique to Microscale and Nanoscale Systems

Usually, the electrical skin depth for field penetration
is much larger than the dimensions of nanoparticles.
Because nanoscale systems are only 10 to 1000 times
larger than the scale of atoms and small molecules,
quantum mechanics plays a role in the transport prop-
erties. Below about 10 nm, many of the continuous
quantities in classical electromagnetics take on a quan-
tized aspect. These include charge transport, capaci-
tance, inductance, and conductance. Fluctuations in
voltage and current also become more important than in
macroscopic systems. Electrical conduction at the
10 nanoscale involves movement of a small number of
charge carriers through thin structures and may attain
ballistic transport. For example, if a 1 μA charge
travels through a nanowire of radial dimensions 30 nm,
then the current density is on the order of 3 × 109 A/m2.
Because of these large current densities, electrical
transport in nanoscale systems is usually a non-
equilibrium process, and there is a large influence of
electron-electron and electron-ion interactions.

In nanoscale systems, boundary layers and interfaces
strongly influence the electrical properties, and the local
permittivity may vary with position [23]. Measurements
on these scales must model the contact resistance
between the nanoparticle and the probe or transmission
line and deal with noise.

2. Fundamental Electromagnetic
Parameters and Concepts Used in
Material Characterization

2.1 Electrical Parameters for High-Frequency
Characterization

In this section, the basic concepts and tools needed to
study and interpret dielectric and magnetic response
over RF frequencies are reviewed [24].

In the time domain, material properties can be
obtained by analyzing the response to a pulse or impulse;
however most material measurements are performed by
subjecting the material to time-harmonic fields.

The most general causal linear time-domain
relationships between the displacement and electric
fields and induction and magnetic fields are

(1)

where f
↔

p (t) is a polarization impulse-response dyadic,

(2)

where f
↔

m (t) is a magnetic impulse-response dyadic.
The permittivity ε↔(ω) dyadic is the complex para-

meter in the time-harmonic field relation D
~

(ω) =
ε↔(ω) .E

~
(ω) and, is defined in terms of the Fourier trans-

form of the impulse-response function. For isotropic
linear media, the scalar complex relative permit-
tivity εr is defined in terms of the absolute permit-
tivity ε and the permittivity of vacuum ε 0 (F/m), as
follows ε (ω) = ε 0ε r(ω), where ε r(ω) = ε r ∞ + χr (ω) =
ε′r(ω) – iε″r (ω), and ε r ∞ is the optical-limit of the
relative permittivity. The value of the permittivity
of free space is ε 0 ≡ 1/μ0c2

ν ≈ 8.854 × 10–12 (F/m), where
the speed of light in vacuum is cν ≡ 299792458 (m/s)
and the exact value of the permeability of free space is
μ0 = 4π × 10 –7 (H/m). Also, tanδd = ε″r/ε′r is the loss
tangent in the material [25].
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Note that in the SI system of units the speed of light,
permittivity of vacuum, and permeability of vacuum
are defined constants. All measurements are related to
a frequency standard. Note that the minus sign before
the imaginary part of the permittivity and permeability
is due to the e iωt time dependence. A subscript eff on the
permittivity or permeability releases the quantity from
some of the strict details of electrodynamic analysis.
The permeability in no applied field is: μ(ω) =
μ0(μ′r (ω) – iμ″r (ω)) and the magnetic loss tangent is
tanδm = μ″r(ω)/μ′r (ω).

For anisotropic and gyrotropic media with an applied
magnetic field, the permittivity and permeability
tensors are hermitian and can be expressed in the
general form

(3)

For a definition of gyrotropic media see [4]. The off-
diagonal elements are due to gyrotropic behavior in an
applied field.

Electric and magnetic fields are attenuated as they
travel through lossy materials. Using time-harmonic
signals the loss can be studied at specific frequencies,
where the time dependence is e iωt. The change in loss
with frequency is related to dispersion.

The propagation coefficient of a plane wave is
γ = α + iβ = ik =
coefficient in an infinitely thick half space, where the
guided wavelength of the applied field is much longer
than the size of the molecules or inclusions, is denoted
by the quantity α and the phase is denoted by β. Due to
losses of a plane wave, the wave amplitude decays as
|E| ∝ exp(–αz). The power in a plane wave of the form
E(z, t) = E0 exp (–αz) exp (iωt – iβz), attenuates as
P ∝ exp (–2αz). For waves in a guided structure:

wavenumber, and speed of light c . Below cutoff, the

plane wave is given by

and has units of Np/m. α is approximated for dielectric
materials as

(5)

In dielectric media with low loss, tanδd <<1, and α

reduces in this limit to α → ω

skin depth is the distance a plane wave travels until it
decays to 1/e of its initial amplitude, and is related to
the attenuation coefficient by δs = 1/α. The concept of
skin depth is useful in modeling lossy dielectrics and
metals. Energy conservation constrains a to be positive.
The skin depth is defined for lossy dielectric materials
as

(6)

In Eq. (6), δs reduces in the low-conductivity limit to

to δs → 2c/(ω
Dp = δs /2 is the depth where the plane-wave energy
drops to 1/e of its value on the surface. In metals, where
the conductivity is large, the skin depth reduces to

(7)

where σdc is the dc conductivity and f is the frequency.
We see that the frequency, conductivity, and perme-
ability of the material determine the skin depth in
metals.

The phase coefficient β for a plane wave is given by

In dielectric media, β reduces to

(9)

The imaginary part of the propagation coefficient
defines the phase of an EM wave and is related to the

refractive index by
the positive square root is taken in Eq. (8). Veselago
[26] developed a theory of negative-index materials
(NIM) where he used negative intrinsic
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ε′r and μ′r , and the negative square root in Eq. (8) is
used. There is controversy over the interpretation of
metamaterial NIM electrical behavior since the perme-
ability and permittivity are commonly effective values.
We will use the term NIM to describe materials that
achieve negative effective permittivity and permeabili-
ty over a band of frequencies.

The wave impedance for a transverse electric
and magnetic mode (TEM) is

magnetic mode (TM) is γ / iωε. The propagating plane
wave wavelength in a material is decreased by a permit-
tivity greater than that of vacuum; for example, for a

The surface impedance in ohms/square of a conduct-
ing material is Zm = (1 + i )σδs . The surface resistance
for highly lossy materials is

(10)

When the conductors on a substrate are very thin, the
fields can penetrate through the conductors into the
substrate. This increases the resistance of a propagating
field because it is in both the metal and the dielectric.
As a consequence of the skin depth, the internal induc-
tance in a highly-conducting material decreases with
increasing frequency, whereas the surface resistance Rs

increases with frequency in proportion to √f—.
Any transmission line will have propagation delay

that relates to the propagation speed in the line. This is
related to the dielectric permittivity and the geometry
of the transmission line. Propagation loss is due to
conductor and material loss.

Some materials exhibit ionic conductivity, so that
when a static electric field is applied, a current is
induced. This behavior is modeled by the dc conductiv-
ity σdc , which produces a low-frequency loss (∝ 1/ω) in
addition to polarization loss (ε″r ). In some materials,
such as semiconductors and disordered solids, the
conductivity is complex and depends on frequency.
This is because the free charge is partially bound and
moves by tunneling through potential wells or hops
from well to well.

The total permittivity for linear, isotropic materials
that includes both dielectric loss and dc conductivity

is defined from the Fourier transform of Maxwell’s
equation: iω D

~
(ω) + J

~
(ω) ≡ iωε E

~
(ω) + σdc E

~
(ω) ≡

iωεt o t E
~

(ω), so that

(11)

In plots of RF measurements, the decibel scale is
often used to report power or voltage measurements.
The decibel (dB) is a relative unit and for power is
calculated by 10 log10 (Pout /Pin). Voltages in decibels
are defined as 20 log10 (Vout / Vin). α has units of
Np/m. The attenuation can be converted from
1 Np/m = 8.686 dB/m. dBm is similar to dB, but rela-
tive to power in milliwatts 10 log(P/mW).

2.2 Electromagnetic Power

In the time domain the internal field energy U satis-
fies: ∂U/∂t = ∂D/∂t · E + ∂B/∂t · H. Using Maxwell’s
equations with a current density J, then produces
Poynting’s Theorem: ∂U/∂t + ∇ · (E × H) = – J · E,
where the time-domain Poynting vector is S(r, t) =
E(r, t) × H(r, t). The complex power flux (W/m2)
is summarized by the complex Poynting vector Sc(ω) =
=(1/2)(E

~
(ω) × H

~ * (ω)). The real part of Sc represents
dissipation and is the time average over a complete
cycle. The imaginary part of Sc relates to the reactive
stored energy.

2.3 Quality Factor

The band width of a resonance is usually modeled by
the quality factor (Q) in terms of the decay of the
internal energy. The combined internal energy in a
mechanical system is the kinetic plus the potential
energy; in an electromagnetic system it is the field
stored energy plus the potential energy. In the time
domain the quality factor is related to the decay of the
internal energy for an unforced resonator as as [27]

(12)

The EM field is modeled by a damped harmonic
oscillator at frequencies around the lossless resonant
frequency ω0 and frequency pulling factor (the resonant
frequency decreases from ω0 due to material losses),
Δω as [27]

(13)
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Taking a Fourier transform of Eq. (13), the absolute
value squared becomes

(14)

and therefore |E(ω)|2, which is proportional to the
power, is a Lorentzian. This linear model is not exact
for dispersive materials, because Q0 may be dependent
on frequency. The quality factor is calculated from the
frequency at resonance f0 as Q0 = f0 / 2(| f 0 – f 3dB|), or
from a fit of a circle when plotting S11(ω) on the Smith
chart. The quality factor is calculated from Q0 = f 0/Δf ,
where Δf is the frequency difference between 3 dB
points on the S21 curve [28]. For resonant cavity meas-
urements, the permittivity or permeability is deter-
mined from measurements of the resonance frequency
and quality factor, as shown in Fig. 2. For time-
harmonic fields the Q is related to the stored field
energies We ,Wh , the angular frequency at resonance ωr ,
and the power dissipated Pd at the resonant frequency:

(15)

Resonant frequencies can be measured with high
precision in high-Q systems; however the parasitic
coupling of the fields to fixtures or materials needs to
be modeled in order to make the result meaningful.
Material measurements using resonances have much
higher precision than using nonresonant transmission
lines.

The term antiresonance is used when the reactive
part of the impedance of a EM system is very high. This
is in contrast to resonance, where the reactance goes to
zero. In a circuit consisting of a capacitor and induc-
tance in parallel, antiresonance occurs when the voltage
and current are in phase.

3. Maxwell’s Equations in Materials
3.1 Maxwell’s Equations From Microscopic to

Macroscopic Scales

Maxwell’s microscopic equations in a media with
charged particles are written in terms of the micro-
scopic fields b, e and sources j, and ρm as

(16)

(17)

(18)

(19)

Note, that at this level of description the macroscopic
magnetic field H and the macroscopic displacement
field D are not defined, but can be formed by averaging
dielectric and magnetic moments and expanding the
microscopic charge density in a Taylor series. In
performing the averaging process, the material length
scales allow the dipole moments in the media to be
approximated by continuously varying functions P and
M. Once the averaging is completed, the macroscopic
Maxwell’s equations are (see Sec. 4.6) to obtain
[27, 29, 30]

(20)

(21)

(22)

(23)

J denotes the current density due to free charge and
source currents. Because there are more unknowns than
equations, constitutive relations for H and D are need-
ed. Even though B and E are the most fundamental
fields, D usually is expressed in terms of E, and B is
usually expressed in terms of H.
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3.2 Constitutive Relations
3.2.1 Linear Constitutive Relations

Since there are more unknowns than macroscopic
Maxwell’s equations, we must specify the constitutive
relationships between the polarization, magnetization,
and current density as functions of the macroscopic
electric and magnetic fields [31, 32]. In order to satisfy
the requirements of linear superposition, any linear
polarization relation must be time invariant, further,
this must also be a causal relationship as given in
Eqs. (1) and (2).

The fields and material-related quantities in
Maxwell’s equations must satisfy underlying sym-
metries. For example, the dielectric polarization and
electric fields are odd under parity transformations and
even under time-reversal transformations. The magne-
tization and induction fields are even under parity
transformation and odd under time reversal. These
symmetry relationships place constraints on the nature
of the allowed constitutive relationships and requires
the constitutive relations to manifest related sym-
metries [29, 33-39]. The evolution equations for the
constitutive relationships need to be causal, and in
linear approximations must satisfy time-invariance
properties. For example, the linear-superposition
requirement is not satisfied if the relaxation time in
Eq. (4) depends on time. This can be remedied by using
an integrodifferential equation with restoring and
driving terms [40, 41].

The macroscopic displacement and induction fields
D and B are related to the macroscopic electric field E
and magnetic fields H, as well as M and P, by

(24)
and

(25)

In addition,

(26)

where J is a function of the electric and magnetic
fields, and Q

↔
is the macroscopic quadrupole moment

density. Pd is the dipolemoment density, whereas P is
the effective macroscopic polarization that also
includes the effects of the macroscopic quadrupole-
moment density [27, 29, 30, 32, 42]. The polarization
and magnetization for time-domain linear response are
expressed as convolutions in terms of the macroscopic

fields. For chiral and magneto-electric materials, Eqs.
(24) and (25) must be modified to accommodate cross-
coupling behavior between magnetic and dielectric
response. General, linear relations defining polarization
in non-magnetoelectric and non-chiral dielectric and
magnetic materials in terms of the impulse-response
dyadics are given by Eqs. (1) and (2). Using the
Laplace transform L, gives

(27)

where

(28)

So the real part is the even function of frequency given by

(29)

and the imaginary part is an odd function of frequency

(30)

and therefore

(31)

also
(32)

(33)

The time-evolution constitutive relations for dielec-
tric materials are generally summarized by generalized
harmonic oscillator equations or Debye-like equations
as overviewed in Sec. 5.2.

3.2.2 Generalized Constitutive Relations
Through the methods of nonequilibrium quantum-

based statistical-mechanics it is possible to show that
the constitutive relation for the magnetization in ferro-
magnetic materials is an evolution equation given by 

(34)

where K
↔

m is a kernel that contains of the micro-
structural interactions given in [43], γg is the gyro-
magnetic ratio, χ0 is the static susceptibility, and Heff
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is the effective magnetic field. Special cases of Eq. (34)
reduce to constitutive relations such as the Landau-
Lifshitz, Gilbert, and Bloch equations. The Landau-
Lifshitz equation of motion is useful for ferromagnetic
and ferrite solid materials:

(35)

where α is a damping constant. Another special case of
Eq. (34) reduces to the Gilbert equation

(36)

In electron-spin resonance (EPR) and nuclear
magnetic resonance (NMR) measurements, the Bloch
equations with characteristic relaxation times T1 and T2

are used to model relaxation. T1 relates to spin-lattice
relaxation as the paramagnetic material interacts with
the lattice. T2 relates to spin-spin interactions:

(37)

where χ↔b has only the diagonal elements χb (11) = 1/T2 ,
χb (22) = 1/T2 , χb (33) = 1/T1 , and Ms = Msz

→. An equation
analogous to (34) can be written for the electrical
polarization [46] as [43]

(38)

The Debye relaxation differential equation is
recovered from Eq. (38) when K

↔
e (r, t , r′, τ) =

I
↔

δ(t – τ)δ(r, – r′)/τe .

4. Electromagnetic Fields in Materials
4.1 The Time-Harmonic Field Approximation

Time-harmonic fields are very useful for solving the
linear Maxwell’s equations when transients are not
important. In the time harmonic field approximation,
the field is assumed to be present without beginning or
end. Periodic signals over − ∞ < t < ∞ are nonphysi-
cal since all fields have a beginning where transients
are generated, but are very useful in probing material
response.

Solutions of Maxwell’s equations that include
transients are most easily obtained with the Laplace
transform. Note that the Laplace or Fourier transformed
fields do not have the same units as the time-harmonic
fields due to integration over time. In Eq. (1), causality
is incorporated into the convolution relation for linear
response. D(t) depends only on E(t) at earlier times and
not future times.

4.2 Material Response to Applied Fields

When a field is suddenly applied to a material, the
charges, spins, currents, and dipoles in a medium
respond to the local fields to form an average field. If
an EM field is suddenly applied to a semi-infinite
material, the total field will include the effects of both
the applied field, transients, and the particle back-
reaction fields from charge, spin, and current rearrange-
ment that causes depolarization fields. This will cause
the system to be in nonequilibrium for a period of time.
For example, as shown in Fig. 3, when an applied EM
field interacts with a dielectric material, the dipoles
reorient and charge moves, so that the macroscopic and
local fields in the material are modified by surface
charge dipole depolarization fields that oppose the
applied field. The macroscopic field is approximately
the applied field minus the depolarization field.
Depolarization, demagnetization, thermal expansion,
exchange, nonequilibrium, and anisotropy interactions
can influence the dipole orientations and therefore the
fields and the internal energy. In modeling the constitu-
tive relations in Maxwell’s equations, we must express
the material properties in terms of the macroscopic
field, not the applied or local fields, and therefore we
need to make clear distinctions between the interaction
processes [40].

Materials can be studied by the response of frequen-
cy-domain or time-domain fields. When considering
time-domain pulses rather than time-harmonic fields,
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this interaction is more complex. The use of time-
domain pulses have the advantage of sampling a
reflected pulse as a function of time, which allows a
determination of the spatial location of the various
reflections.

Time-harmonic fields are often used to study materi-
al properties. These have a specific frequency from
time minus infinity to plus infinity, without transients;
that is, fields with a e iωt time dependence. As a conse-
quence, in the frequency domain, materials can be
studied through the reaction to periodic signals. The
measured response relates to how the dipoles and
charge respond to the time-harmonic signal at each
frequency. If the frequency information is broad
enough, a Fourier transform can be used to study the
corresponding time-domain signal.

The relationships between the applied, macroscopic,
local, and the microscopic fields are important for
constitutive modeling (Fig. 3). The applied field
originates from external charges, whereas the macro-
scopic fields are averaged quantities in the medium.
The displacement and inductive (or magnetic) macro-
scopic fields in Maxwell’s equations are implicitly
defined through the constitutive relationships and
boundary conditions. The local field is the averaged
EM field at a particle site due to both the applied field
and the fields from all of the other sources, such as
dipoles, currents, charge, and spin [47]. The micro-
scopic field represents the atomic-level EM field,
where particles interact with the field from discrete
charges. Particles interact with the local EM field that
is formed from the applied field and the microscopic
field. At the next level of homogenization, groups
of particles interact with the macroscopic field. The
spatial and temporal resolution contained in the macro-

scopic variables are directly related to the spatial and
temporal detail incorporated in the constitutive material 
parameters. Constitutive relations can be exact as in
[40] and Eqs. (34) and (38), but usually, to be useful,
are approximate.

Plane waves are a useful approximation in many
applications. Time-harmonic EM plane waves in mate-
rials can be treated either as traveling without attenua-
tion, propagating with attenuation, or evanescent. Plane
waves may propagate in the form of a propa-
gating wave e i(ωt – βz), or a damped propagating wave
e i(ωt – βz) – αz, or an evanescent wave e iωt – αz. Evanescent
fields are exponentially damped waves. In a wave-
guide, this occurs for frequencies below any transverse
resonance frequencies [24, 48], when k2 – k2

c < 0, where
kc is the cutoff wave number calculated from the

Evanescent and near field EM fields occur at apertures
and in the vicinity of antennas. Evanescent fields can be
detected when they are perturbed and converted into
propagating waves or transformed by dielectric loss.
Electromagnetic waves may convert from near field to
propagating. For example, in coupling to dielectric
resonators the near field at the coupling loops produce
propagating or standing waves in a cavity or dielectric
resonator. Evanescent and near fields in dielectric
measurements are very important. These fields do not
propagate and are used in near-field microwave probes
to measure or image materials at dimensions much less
than λ/2 [49, 50] (see Fig. 17). The term near field usu-
ally refers to the waves close to an waveguide, antenna,
or probe and is not necessarily an exponentially
damped plane wave. In near-field problems the goal is
to model the reactive region. Near fields in the reactive
region, (L < λ/2π), contain stored energy and there is
no net energy transport over a cycle unless there are
losses in the medium. By analogy, the far field relates
to radiation. These remove energy from the transmitter
whether they are immediately absorbed or not. There is
a transition region called the radiative near field.

Because electrical measurements can now be per-
formed at very small spatial resolutions, and the
elements of electrical circuits are approaching the
molecular level, we require good models of the macro-
scopic and local fields. This is particularly important,
because we know that the Lorentz theory of the local
field is not always adequate for predicting polarizabili-
ties [51, 52]. Also, when solving Maxwell’s equations
at the molecular level, definitions of the macroscopic 
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field and constituative relationships are important. A
theoretical analysis of the local EM field is important
in dielectric modeling of single-molecule measure-
ments and thin films. The effective EM fields at this
level are local, but not atomic-scale, fields.

The formation of the local field is a very complex
process whereby the applied electric field polarizes
dipoles in a molecules or lattices and the applied
magnetic field causes current and precession of spins.
Then, the molecule’s dipole field modifies the dipole
orientations of other molecules in close proximity,
which then reacts back to produce a correction to the
molecule’s field in the given region. This process gets
more complicated for behavior that depends on time.
We define the local EM field as the effective, averaged
field at a specific point in a material, not including the
field of the particle itself. This field is a function of
both the applied and multipole fields in the media. The
local field is related to the average macroscopic and
microscopic EM fields in that it is a sum of the macro-
scopic field and the effects of the near-field. In ferro-
electric materials, the local electric field can become
very large and hence there is a need for comprehensive
local field models. In the literature on dielectric materi-
als, a number of specific fields have been introduced to
analyze polarization phenomena. The electric field
acting on a nonpolar dielectric is commonly called the
internal field, whereas the field acting on a permanent
dipole moment is called the directing field. The differ-
ence between the internal field and directing fields is
the average reaction field. The reaction field is the
result of a dipole polarizing its environment [53].

Nearly exact classical theories have been developed
for the static local field. Mandel and Mazur developed
a static theory for the local field in terms of the polar-
ization response of a many-body system by use of
the T-matrix formalism [54]. Gubernatis extended the
T-matrix formalism [55]. However, the T-matrix contri-
butions are difficult to calculate. Keller’s review article
[56] on the local field uses an EM propagator approach.
Kubo’s linear-response theory and other theories have
also been used for EM correlation studies [40, 53, 57].

If the applied field has a wavelength that is not much
longer than the typical particle size in a material, an
effective permittivity and permeability is commonly
assigned. The terms effective permittivity and perme-
ability are commonly used in the literature for studies
of composite media. The assumption is that the proper-
ties are “effective” if in some sense they do not adhere
to the definitions of the intrinsic material properties. An
effective permittivity is obtained by taking a ratio of
some averaged displacement field to an averaged

electric field. The effective permeability is obtained by
taking a ratio of some averaged induction field to an
averaged magnetic field. This approach is commonly
used in modeling negative-index material properties
when scatterers are designed in such a manner such that
the scatterers themselves resonate. In these situations
the wavelength may approach the dimensions of the
inclusions.

4.3 Macroscopic and Local Electromagnetic Fields
in Materials

The mesoscopic description of the EM fields in a
material is complicated. As a field is applied to a
material, charges reorient to form new fields that
oppose the applied field. In addition, a dipole tends to
polarize its immediate environment, which modifies
the field the dipole experiences. The field that polarizes
a molecule is the local field El and the induced dipole
moment is p = α↔. El , where α↔ is the polarizability. In
order to use this expression in Maxwell’s equations, the
local field needs to be expressed in terms of the macro-
scopic field. Calculation of this relationship is not
always simple.

To first approximation, the macroscopic field is
related to the external or applied field (Ea), and the
depolarization field by

(39)

The local field is composed of the macroscopic field
and a material-related field. In the literature, the effec-
tive local field is commonly modeled by the Lorentz
field, which is defined as the field in a small cavity that
is carved out of a material around a specific site, but
excludes the field of the observation dipole. A well-
known example of the relationship between the
applied, macroscopic, and local fields is given by an
analysis of the Lorentz spherical cavity in a static
electric field. For a Lorentz sphere the local field is the
sum of applied, depolarization, Lorentz, and atomic
fields [4, 56, 58]:

(40)

For cubic lattices in a spherical cavity, the Lorentz local
field is related to the macroscopic field and polarization
by

(41)
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In the case of a sphere, the local field in Eq. (39) equals
the applied field.

For induced dipoles,

(42)

where N is the density of dipoles, and Eq. (41) yields
El = E/(1 – Nα/3ε0 ) = P/Nα.

Onsager [53] generalized the Lorentz theory by
distinguishing between the internal field that acts on
induced dipoles and the directing field that acts on
permanent dipoles. If we use P = ε0 (εr – 1)E in
Eq. (41), we find El = ((εr + 2)/3)E. Therefore, for
normal materials the Lorentz field exceeds the macro-
scopic field. For a material where the permittivity is
negative we can have El ≤ E. In principle, we can null
out the Lorentz field when εr = – 2. Some of the essen-
tial problems encountered in microscopic constitutive
theory center around the local field. Note that for some
materials, recent research indicates that the Lorentz
local field does not always lead to the correct polariz-
abilities [51]. We expect the Lorentz local field expres-
sion to break down near interfaces. For nanoparticles, a
more complicated theory needs to be used for the local
field.

A rigorous expression for the static local field creat-
ed by a group of induced dipoles can be obtained by an
iterative procedure [53, 59] using pi = αiEl(ri) and

(43)

where

(44)

If there are also permanent dipoles, they need to be
included as p(ri) = pperm(ri) + αiEl (ri ).

4.4 Overview of Linear-Response Theory

Models of relaxation that are based on statistical
mechanics can be developed from linear-response
theory. Linear-response theory uses an approximate
solution of Liouville’s equation and a Hamiltonian that
contains a time-dependent relationship of the field
parameters based on a perturbation expansion. This
approach shows how the response functions and

relaxation are related to time dependent polarization
correlation functions. The polarization P(t) is related to
the response dyadic φ↔ (t) and the driving field E(t) by
[53, 60]

(45)

where φ↔ (t – τ) = 0 for t – τ < 0. The susceptibility is
defined as

(46)

where the response in volume V is related to the corre-
lation function for stationary processes in terms of the
microscopic polarization

(47)

and therefore for microscopic polarizations

(48)

Once the correlation functions are determined then
the susceptibility can be found. An approach that
models relaxation beyond linear response is given in
[40, 43, 44, 61]. The method of linear response has
exceeded expectations and has been a cornerstone of
statistical mechanics.

4.5 Averaging to Obtain Macroscopic Field

If we consider modeling of EM wave propagation
from macroscopic through molecular and sub-molecu-
lar to atomic scales, the effective response at each level
is related to different degrees of homogenization. At
wavelengths short relative to particle size the EM prop-
agation is dominated by scattering, whereas at long
wavelengths it is dominated by traveling waves. In
microelectrodynamics, there have been many types of
ensemble and volumetric averaging methods used to
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define the macroscopic fields obtained from the micro-
scopic fields [27, 29, 30, 40, 54]. For example, in the
most commonly used theory of microelectromagnetics,
materials are averaged at a molecular level to produce
effective molecular dipole moments. The microscopic
EM theories developed by Jackson, Mazur, and
Robinson [27, 29, 30] average multipoles at a molecu-
lar level and replace the molecular multipoles, with
averaged point multipoles usually located at the center-
of-mass position. This approach works well down to
near molecular level, but breaks down below the
molecular to submolecular level.

In the various approaches, the homogenization of the
fields are formed in different ways. The averaging is
always volumetric rather than a time average. Jackson
uses a truncated averaging test function to proceed
from microscale to the macroscale fields [27]. Robinson
and Mazur use ensemble averaging [29, 30] and statis-
tical mechanics. Ensemble averaging assumes there is a
distribution of states. In the volumetric averaging
approach, the averaging function is not explicitly deter-
mined, but the function is assumed to  be such that the
averaged quantities vary in a manner smooth enough to
allow a Taylor-series expansion to be performed. In the
approach of Mazur, Robinson, and Jackson [27, 29, 30]
the charge density is expanded in a Taylor series and
the multipole moments are identified as in Eq. (49).
The microscopic charge density can be related to the
macroscopic charge density, polarization, and quadru-
pole density by a Taylor-series expansion [27]

(49)
where Q

↔
(r, t) is the quadrupole tensor. In this inter-

pretation, the concepts of P and ρmacro are valid at length
scales where a Taylor-series expansion is valid. These
moments are calculated about each molecular center of
mass and are treated as point multipoles. However, this
type of molecular averaging limits the scales of the
theory to larger than the molecular level and limits the
modeling of induced-dipole molecular moments [40].
Usually, the averaging approach uses a test function fa

and microscopic field e given by

(50)

However, the distribution function is seldom explic-
itly needed or determined in the analysis. The macro-
scopic magnetic polarization is found through an anal-
ogous expansion of the microscopic current density.

In NIM materials, effective properties are obtained
by use of electric and magnetic resonances of embed-
ded structures that produce negative effective ε′ef f [62].
In Sec. 4.6 the issue of whether this response can be
summarized in terms of material parameters is dis-
cussed. Defining permittivity and permeability on these
scales of periodic media can be confusing. The field
averaging used in NIM analysis is based on a unit cell
consisting of split-ring resonators, wires, and ferrite or
dielectric spheres [62, 63].

In order to obtain a negative effective permeability in
NIM applications, researchers have used circuits that
are resonant, which can be achieved by the introduction
of a capacitance into an inductive system. Pendry et al.
[63-65] obtained the required capacitance through gaps
in split-ring resonators. The details of the calculation of
effective permeability are discussed in Reference [63].
Many passive and/or active microwave resonant
devices can be used as sources of effective perme-
ability in the periodic structure designed for NIM
applications [66]. We should note that the composite
materials used in NIM are usually anisotropic. Also, the
use of resonances in NIM applications produce effec-
tive material parameters that are spatially varying and
frequency dispersive.

4.6 Averaging to Obtain Permittivity and
Permeability in Materials

The goal of this section is to study the electrical
permittivity and permeability in materials starting from
microscopic concepts and then progressing to macro-
scopic concepts. We will study the limitations of the
concept of permittivity in describing material behavior
when wavelengths of the applied field approach the
dimensions of the spaces between inclusions or
inclusion sizes. When high-frequency fields are used in
the measurement of composite and artificial structures,
these length-scale constraints are important. We will
also examine alternative quantities, such as dipole
moment and polarizability, that characterize dielectric
and magnetic interactions of molecules, atoms, and that
are still valid even when the concepts of permittivity
and permeability are fuzzy.

The concepts of polarizability and dipole moment
p in p = αEl are valid down to the atomic and molecu-
lar levels. Permittivity and permeability are frequency-
domain concepts that result from the microscopic time-
harmonic form of Maxwell’s equations averaged over a
unit cell. They are also related to the Fourier transform
of the impulse-response function. The most common
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way to define ε↔ is through the impulse-response func-
tion f

↔
p (t).

Statistical mechanics yields an expression for the
impulse-response function in terms of correlation func-
tions of the microscopic polarizations p. For linear
response [53]

(51)

where V is the volume, L0 is Liouville’s operator,
p. denotes iL0p, and < >0 denotes averaging over phase.
From this equation, we can identify the impulse-
response dyadic f

↔
p from P(t) = V ∫∞0< p (t)p. (τ) >0 · E(τ)

dτ / kBT , and for a stationary system, f
↔

p(t) =
V < p (0)p. (– t) >0 /kBT [53].

Ensemble and volumetric averaging methods are
used to obtain the macroscopic fields from the micro-
scopic fields (see Jackson [27] and the references
therein). For example, in the most commonly used
theory, materials are averaged at a molecular level to
produce effective molecular dipole moments. When
deriving the macroscopic Maxwell’s equations from
the microscopic equations, the electric and magnetic
multipoles within a molecule are replaced with aver-
aged point multipoles usually located at the molecular
center-of-mass positions. Then these effective moments
are assumed to form a continuum, which then forms the
basis of the macroscopic polarizations. The procedure
assumes that the wavelength in the material is much
larger than the individual particle sizes. As Jackson
[27] notes, the macroscopic Maxwell’s equations can
model refraction and reflection of visible light, but are
not as useful for modeling x-ray diffraction. He states
that the length scale L0 of 10 nanometers is effectively
the lower limit for the validity of the macroscopic
equations. Of course, this limit can be decreased with
improved constitutive relationships.

For macroscopic heterogeneous materials the wave-
lengths of the applied fields must be much longer
than individual particle or molecule dimensions that
constitute the material. When this criterion does not
hold, then the spatial derivative in the macroscopic
Maxwell’s equations, for example, (∇ × H), and the
displacement field loses its meaning. Associated with
this homogenization process at a given frequency is the
number of molecules or inclusions that are required to
define a displacement field and thereby the related
permittivity.

When the ratio of the dipole length scale to wave-
length is not very small, the Taylor’s series expansion
is not valid and the homogenization procedure breaks
down. When this criteria is not satisfied for metafilms,
some researchers use generalized sheet transition con-
ditions (GSTC’s) [67-70] at the material boundaries;
however, the concept of permittivity for these struc-
tures, at these frequencies, is still in question and is
commonly assigned an effective value. Drude and
others [67, 68] compensated for this by introducing
boundary layers. In such cases, it is not clear whether
mapping complicated field behavior onto effective
permittivity and permeability is useful, since at these
scales, the results can just as well be thought of as
scattering behavior.

When modeling the permittivity or permeability in a
macroscopic medium in a cavity or transmission line,
the artifacts of the measurement fixture must be
separated from the material properties by solving a
relevant macroscopic boundary-value problem. At
microwave and millimeter frequencies a low-loss
macroscopic material can be made to resonate as a
dielectric resonator. In such cases, if the appropriate
boundary-value problem is solved, the intrinsic permit-
tivity and permeability of the material can be extracted
because the wavelengths are larger than the constituent
molecule sizes, and as a result, the polarization vector
is well defined. However, many modern applications
are based on artificial structures that produce an EM
response where the wavelength in the material is only
slightly larger than the feature or inclusion size. In such
cases, mapping the EM response onto a permittivity
and permeability must be scrutinized. In general, the
permittivity is well defined in materials where wave
propagation through the material is not dominated by
multiple scattering events.

5. Overview of the Dielectric Response to
Applied Fields

5.1 Modeling Dielectric Response Upon
Application of an External Field

Dielectric parameters play a critical role in many
technological areas. These areas include electronics,
microelectronics, remote sensing, radiometry, dielectric
heating, and EM-assisted chemistry [20]. At RF
frequencies dielectrics exhibit behavior that metals
cannot achieve because dielectrics allow field penetra-
tion and can have low-to-medium loss characteristics.
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Using dielectric spectroscopy as functions of both
frequency and temperature we can obtain some, but not
all of the information on a material’s molecular or
lattice structure. For example, measurements of the
polarization and conductivity indicate the polarizability
and free charge of a material and polymer mobility of
side chains can be studied with dielectric spectroscopy.
Also, when a polymer approaches a glass transition
temperature the relaxation times change abruptly.
This is observable with dielectric spectroscopy. In
addition, the loss peaks of many liquids change with
temperature.

When an EM field is applied to a material, the atoms,
molecules, free charge, and defects adjust positions. If
the applied field is static, then the system will eventu-
ally reach an equilibrium state. However, if the applied
field is time dependent then the material will continu-
ously relax in the applied field, but with a time lag. The
time lag is due to screening, coupling, friction, and
inertia. An abundance of processes are occurring during
relaxation, such as heat conversion processes, lattice-
phonon, and photon phonon coupling. Dielectric relax-
ation can be a result of dipolar and induced polariza-
tion, lattice-phonon interactions, defect diffusion,
higher multipole interactions, or the motion of free
charges. Time-dependent fields produce nonequilibri-
um behavior in the materials due both to the heat
generated in the process and the constant response to
the applied field. However, for linear materials and
time-harmonic fields, when the response is averaged
over a cycle, if heating is appreciable, nonequilibrium
effects such as entropy production relate more to
temperature effects than the driving field stimulus. The
dynamic readjustment of the molecules in response
to the field is called relaxation and is distinct from
resonance. For example, if a dc electric field is applied
to a polarizable dielectric and then the field is sudden-
ly turned off, then the dipoles will relax over a charac-
teristic relaxation time into a more random state.

The response of materials depends strongly on
material composition and lattice structure. In many
solids, such as solid polyethylene, the molecules are not
able to appreciably rotate or polarize in response to
applied fields, indicating a low permittivity and small
dispersion. The degree of crystallinity, existence of
permanent dipoles, dipole-constraining forces, mobility
of free charge, and defects all contribute to dielectric
response. Typical responses for high-loss and low-loss
dielectrics are shown in Figs. 4, 5, and 6.
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Fig. 4. Broadband permittivity variation for materials [71].

Fig. 5. Typical frequency dependence of ε′r of low-loss fused silica
as measured by many methods.

Fig. 6. Typical frequency dependence of the loss tangent in low-loss
materials such as fused silica.
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A material does not respond instantaneously to an
applied field. As shown in Fig. 4, the real part of the
permittivity is a monotonically decreasing function of
frequency in the relaxation part of the spectrum, far
away from intrinsic resonances. At low frequencies, the
dipoles generally follow the field, but thermal agitation
also tends to randomize the dipoles. As the frequency
increases to the MMW band, the response to the driv-
ing field generally becomes more incoherent. At higher
frequencies, in the terahertz or infrared spectrum, the
dipoles may resonate, and therefore the permittivity
rises until it becomes out of phase with the field and
then drops. At RF frequencies, materials with low loss
respond differently from materials with high loss
(compare Fig. 4 for a high-loss material versus a low-
loss material in Figs. 5 and 6). For some materials, at
frequencies at the low to middle part of the THz band,
ε′r may start to contain some of the effects of resonances
that occur at higher frequencies, and may start to
slowly increase with frequency, until resonance, and
then decreases again.

The local and applied fields in a dielectric are
usually not the same. As the applied field interacts with
a material it is modified by the fields of the molecules
in the substance. Due to screening, the local electric
field differs from the applied field and therefore
theories of relaxation must model the local field (see
Sec. 4.3).

Over the years, many models of polar and nonpolar-
materials have been developed that use different
approximations to the local field. The Clausius-
Mossotti equation was developed for noninteracting,
nonpolar molecules governed by the Lorentz equation
for the internal field. This equation works well for non-
polar gases and liquids. Debye introduced a generaliza-
tion of the Clausius-Mossotti equation for the case of
polar molecules. Onsager developed an extension of
Debye’s theory by including the reaction field and a
more comprehensive local field expression [53]. For a
dielectric composed of permanent dipoles, the polariza-
tion is written in terms of the local field as Eq. (42)

There are electronic, ionic, and permanent dipole
polarizability contributions, so that μ→d = (αel + αion +
αperm )El , αel = 4πε0R3 / 3, αion = e2 / Yd0 . Here, Y is
Young’s modulus, R is the radius of the ions, d0 is
the equilibrium separation of the ions, and αperm =
|μ→e |2 /3kBT, where μ→e is the permanent dipole moment.
There may also be a contribution to the polarizability
due to excess charge at microscopic interfaces. Using

the Lorentz expression for the local field, the polariza-
tion can be written as

(52)

or

(53)

This is the Clausius-Mossotti relation that is common-
ly used to estimate the permittivity of nonpolar
materials from atomic polarizabilities:

(54)

or

(55)

The Clausius-Mossotti relation relates the permittivity
to the polarizability. The polarizability is related to the
vector dipole moment μ→d of a molecule or atom and
the local field El , μ→d = αEl . In principle, once the
polarizability is determined for a group of molecules,
then the permittivity of the ensemble can be calculated
with the implicit assumption that there are many mole-
cules located over the distance of a wavelength. Typical
polarizabilities of atoms are between 0.1 and 100 Fm2

[72]. Polarizabilities of molecules can be higher than
for atoms. The local field for a sphere is related to the
polarization by Eq. (41).

A generalization of the Clausius-Mossotti equation
to include a permanent moment μ→e is summarized in
what is called the Debye equation that is valid for gases
and dilute solutions:

(56)

The Debye equation could be used to estimate the
permittivity of a gas if both the polarizability and the
dipole moment were known from experiment.
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For a specific dipole immersed in an environment of
surrounding dipoles, the dipole will tend to polarize the
surrounding dipoles and thereby create a reaction field.
Onsager included the effects of the reaction field into
the local field and obtained the following relationship
for the static field that, and unlike the Debye equation,
can be used to model the dipole moment of some pure
liquids:

(57)

where ε∞ is the optical limit of the permittivity. The
Onsager equation is often used to calculate dipole
moments of gases. Both atoms and molecules can
polarize when immersed in a field. Note that Eq. (57)
uses the permittivity of the liquid, which is a macro-
scopic quantity to estimate the microscopic dipole
moment.

5.2 Dielectric Relaxation and Resonance

5.2.1 Simple Differential Equations for Relaxation
and Resonance

A very general, but simplistic equation, for modeling
polarization response that depends on time is given by
a harmonic-oscillator relation:

(58)

where P is polarization, τ is the relaxation time, ω0

Various special cases of Eq. (58) serve as simple, naive
models of relaxation, resonance, and plasmonic
response. The first term relates to the effects of inertia,
the second to dissipation, the third to restoring forces,
and the RHS represents the driving forces. A weakness
of Eq.(58) is that the simple harmonic oscillator model
assumes only a single relaxation time, and resonance
frequency. This equation can be generalized to include
interactions, (see Eq. (117)). In most materials, the
molecules are coupled and have a broad range of relax-
ation frequencies that widens the dielectric response.
For time-harmonic fields Eq. (58) is

(59)

A resonance example is shown in Fig. 7. Intrinsic
material resonances in ionic solids can occur at high
frequencies due to driving at phonon normal-mode
frequencies and relate to the mass inertial aspect in

sublattices.

If we eliminate the inertial interaction when
ω2

0>> ω2, we have the time-domain Debye differential
equation for pure relaxation:

(60)

For time-harmonic fields, the Debye response is

(61)

Except for liquids like water, dielectrics rarely exhibit
the response of Eq. (61) since there is no single
relaxation time over RF frequencies.

We generally assume that dipoles reorient in an
applied field in discrete jumps as the molecule makes
transitions from one potential well minimum to
another with the accompanied movement of a polaron
or defect in the lattice. The Debye model of relaxation
assumes that dipoles relax individually with no inter-
action between dipoles and with no inertia, but includes
frictional forces. The real part of the permittivity for
dipolar systems generally does not exhibit single-pole
Debye response, but rather a power-law dependence. 
The origin of this difference can be attributed to many-
body effects that tend to smear the response over a
frequency band.
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If we eliminate the restoring force term in Eq. (59),
we have an equation of motion for charged plasmas,

(62)

For time-harmonic fields, this becomes

(63)

5.2.2 Modeling Relaxation in Dielectrics

The polarization of a material in an applied field
depends on the permanent and induced dipole
moments, the local field, and their ability to rotate with
the field. Dielectric loss in polar materials is due
primarily to the friction caused by rotation, free charge
movement, and out-of-phase dipole coupling. Losses in
nonpolar materials originate mainly from the inter-
action with neighboring permanent and induced
dipoles, intrinsic photon-phonon interactions with the
EM field, and extrinsic loss mechanisms caused by
defects, dislocations, and grain structure. Loss in many
high-purity crystals is primarily intrinsic in that a
crystal will vibrate nearly harmonically; however,
anharmonic coupling to the electric field and the
presence of defects modifies this behavior. The an-
harmonic interaction allows photon-phonon interaction
and thereby introduces loss [73]. High-purity centro-
symmetric dielectric crystals, that is, crystals with
reflection symmetry, such as crystalline sapphire,
strontium titanate, or quartz, have generally been found
to have lower loss than crystals with noncentro-
symmetry [74].

A transient current may be induced if an electric field
is applied, removed, or heated. This can be related to
the dielectric response. The depolarization current for
many lossy disordered solids is nonexponential and, at
time scales short relative to the relaxation time of the
media, can satisfy a power law of the form [75, 76]

(64)

and satisfy a power law at long times of the form

(65)

where 0 < n, m < 1. In this model, a short time scale
corresponds to frequencies in the microwave region
(τ ∝ 1/ f < 1 × 10–9 s) and long relaxation times refer to
frequencies less than 10 kHz (τ ∝ 1/ f < 1 × 10–4 s). In
order to satisfy theoretical constraints at very short
periods the current must depart from Eq. (64). There
are exceptions to the behavior given in Eqs. (64) and
(65) in dipolar glasses, polycrystalline materials, and
other materials [77]. The susceptibility of many lossy
disordered solids typically behave at high frequencies
as a power law

(66)

This implies χ″ /χ′ is independent of frequency. On the
other hand, measurements of many ceramics, glasses,
and polymers exhibit a loss tangent that increases
approximately linearly with frequency as shown in
Fig. 6.

Dissado and Hill conclude that nonexponential
relaxation is related to cluster response [75]. In their
model, molecules within a correlated region react to the
applied field with a time delay. The crux of this
approach is that in most condensed-matter systems the
relaxation is due not to independently relaxing dipoles,
but rather that the relaxation of a single dipole depends
on the state of other dipoles in a cluster. Therefore their
model includes dipole-dipole coupling. This theory of
disordered solids is based on charge hopping and
dipolar transitions within regions surrounding a defect
and between clusters [75]. The effect is to spread out
the response over time and therefore to produce non-
exponential behavior. Dissado and Hill developed a
representation of a correlation function that includes
cluster interaction. According to this theory, the
time-domain response for short time scales is Gaussian
e– t 2 / τ 2 .

At longer periods there are intra-cluster transitions
that follow a power law of the form t –n. At still longer
periods there are inter-cluster transitions with a Debye-
type response e– t / τ, and finally at very long periods
there is response of the form t – m – 1 [75].

Jonscher, Dissado, and Hill have developed theories
of relaxation based on fractal self-similarity [78, 79].
Jonscher’s approach is based on a screened-hopping
model where response is modified due to many-body
charge screening [80]. In the limit of weak screening,
the Debye model is recovered.

Nonexponential response has been obtained with
many models. In any materials where the dipoles do not
rotate independently, the relaxation is nonexponential.
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Nonexponential response has also been reproduced in
computer simulations for chains of dipoles by means of
a correlation-function approach with coupled rate
Eqs. [81-83].

Note that nonexponential time-domain response is
actually required for over some bands in order to have a
causal-function response over all frequencies. This is a
consequence of the Paley-Wiener theorem [84].
According to this theorem, the correlation or decay func-
tion cannot be a purely damped exponential func-
tion for large times. If C(t) is the decay function then

(67)

must be finite. This requires the decay function to
vanish less fast than a pure exponential at large times,
C(t) ≈ exp (– ct q) where q < 1 and c is a constant. We
can show that at short times, decay occurs faster than
exponential [85].

Nigmatullian et al. [86, 87] used the Mori-Zwanzig
formalism to express the permittivity in a very general
form:

(68)

and concluded that for most disordered materials, the
response is similar to that of a distributed circuit with
R±(iω) = [(iωτ1)± ν 1+ (iωτ2)± ν 2]±, where νi are constants
determined by numerical fits. In the formulation of
Baker-Jarvis et al. [88], R± corresponds to the complex
relaxation times τ(ω) as R+(iω) = iωτ(ω) (see Sec. 11).
A (iωτ)(n–1) frequency dependence of the complex
relaxation periods corresponds to a impulse-response
function of the form t – n.

In addition, in analyzing dielectric data the electric
modulus approach is sometimes used where M(ω) =
M′ (ω)+iM″ (ω) = 1/εr = ε′r / (εr′2+ εr″2)+iεr″/ (εr′2+ εr″2).

Dielectric relaxation has also been described by
Kubo’s linear-response theory that is based on cor-
relation functions. This is an example of a relaxation
theory derived from Liouville’s equation. The main
difficulty with these approaches is that the correlation
functions are difficult to approximate to highlight the
essential physics, and gross approximations are usually
made in numerical calculations. The linear expansion
of the probability-density function in Kubo’s theory
also limits its usefulness for highly nonequilibrium
problems. Baker-Jarvis et al. have recently used a
statistical-mechanical projection-operator method
developed by Zwanzig and Robertson [89] to model

dielectric and magnetic relaxation response and the
associated entropy production [19, 40, 41, 43, 44].

6. The Distribution of Relaxation Times
(DRT) Model for Homogeneous
Materials

There are many models used to fit measured frequen-
cy-dependent dielectric relaxation data for homoge-
neous materials. These models are usually general
enough to fit many types of response. When dealing
with heterogeneous materials, mixture equations are
commonly used (Sec. 22). The DRT model is restricted
to relaxation, and it assumes there is a probability
distribution y (t) that underpins the relaxation response
with a relaxation time τ. In this model, the permittivity
can be written as

(69)

where

(70)

Note that DRT is a single-pole model and cannot be
used for resonances. We see that in the DRT, Debye
relaxations are weighted by a probability-density
function. Equation (69) can be inverted by the Laplace
transform as shown in the Appendix of Böttcher [53].

The DRT approach is sufficiently general that most
causal, relaxation dielectric-response phenomena can
be described by the model for Debye and power-law
response. In the DRT the slope of ε′r (ω) is always
negative [90]. This is consistent with causality. It also
indicates that the model is only valid for relaxation and
not resonance. Around resonance ε′r (ω) can increase
with frequency and become negative as indicated in
Fig. 7.

Equation (69) can fit the relaxation response of
many dielectrics because the Debye equation originates
from a rate equation based on thermodynamics contain-
ing the essential physics, and Eq. (69) is a distribution
of Debye relaxations. The DRT then extends this into a
multi-relaxation period rate equation. We consider
various special cases of Eq. (69) below. For other
special cases please see Böttcher [53]. In any complex
dielectric material, we would expect there would be a
broadening of relaxation times due to heterogeneity of
the molecular response, and in this context the DRT
model makes sense. This approach is often criticized,
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because it is not always possible obtain a physical inter-
pretation of the distribution function [75].

6.1 Debye Model

The simplest case of the distribution function in
Eq. (69) is an uncorrelated approximation where

(71)

which yields the Debye response

(72)

In this case, the pulse response function is

(73)

In terms of components,

(74)

and

(75)

If ωτ is eliminated in the Debye model, and the
equations for εr′(ω) and εr″ (ω) are plotted against each
other, we obtain the equation for a circle:

(76)

The center of the circle is on the horizontal axis.
The reasons why the Debye equation is a paradigm

in dielectric relaxation theory is because it is simple
and contains the essential physics and thermodynamics
in relaxation. That is, it models idealized relaxation,
and it yields predictions on the temperature dependence
of the relaxation time τ = A exp (Ea /RT), where Ea is
the activation energy.

6.2 Cole-Cole Model

The Cole-Cole model has been found useful for
modeling many liquids, semisolids, and other materials
[53]. In this case,

(77)

and

(78)

where α < 1. The pulse response function is fp (t) =

real and imaginary parts of the permittivity can be
separated into

(79)

(80)
A plot of εr′(ω) versus εr″(ω) yields a circle, where the
center is below the vertical axis.

6.3 Cole-Davidson Model

The Cole-Davidson model has also been found
useful for modeling many liquids, semisolids, and other
materials [53]. If we consider the case τ ≤ τ0 :

(81)

and zero otherwise. The permittivity is

(82)

where β < 1. The pulse response function is

(83)

The real and imaginary parts of the permittivity can be
separated into

(84)

(85)

The plot of εr′(ω) versus εr″(ω) maps out a skewed arc
rather than a circle.
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6.4 Havrilak-Negami Model

The Havrilak-Negami distribution has two para-
meters to fit data and is very general. It can be used to
fit the response of many liquids and non-Debye solid
materials [53]. In the special case α = 0 it reverts to the
Cole-Davidson model. The distribution function is

(86)
and θ = tan–1{sin π (1 – α) / (τ /τ0 + cos π (1 – α))}

(87)

where 0 < α ≤ 1 and 0 < β ≤ 1, and

(88)

(89)

7. Loss and Conductivity

Loss originates from the conversion of EM field
energy into heat and radiation through photon-phonon
interactions. In dielectrics the heating is caused by the
transformation of electromagnetic energy into lattice
kinetic energy, which is seen as frictional forces on
dipoles and the motion and resulting friction of free
charges in materials. Major mechanisms of conduction
in dielectrics in the RF band are ionic or electrolytic
migration of free ions, impurities or vacancies, electro-
phoretic migration of charged molecules, and elec-
tronic conduction of semi-free electrons that originate
from jump processes of polarons. At low frequencies,
dipoles can respond to the changes in the applied field,
so dielectric losses usually are low and the stored

energy is high, but as the frequency increases, the
dipole response tends to fall behind the applied field
and, therefore, the loss usually increases and the stored
energy decreases. This is related to the phasing between
the current and voltage waves, in analogy to the heating
an electric motor encounters when the phase between
the voltage and current changes.

Ionic conduction in insulating dielectrics is due to
the migration of charged ions. The migration takes
place through tunneling or jumps induced by the
applied field, or by slow migration under the applied
field. In solid polymers it may proceed by jumps from
one vacancy to another or by electronic conduction. In
oxide glasses it is the movement of positively charged
alkali ions in the applied field. In many materials, the
dielectric losses originate in vacancy-vacancy and
vacancy-impurity relaxations.

At high frequencies, lossy semiconductors, super-
conductors, and metals have a complex free-charge ac
conductivity that is explained by the Drude model. This
can cause the effective permittivity to become negative
[27]. To understand this, consider Maxwell’s equation,

(90)

We can define an effective charge current as

(91)

or for time-harmonic fields

(92)

Combining ac J with the displacement field produces
an effective real part of the permittivity that can be
negative over a region of frequencies. For example in
plasmas and superconductors, the effective conduct-
ivity satisfies iωD∼ (ω) + J∼ (ω) = [iω(ε′(ω) – iε′′(ω)) +
σ′(ω) – iσ′′(ω)]E∼ (ω), yielding

(93)

where σ′ ≈ σdc and σ″ relates to the reactive part of the
surface impedance. A large σ″ can produce a negative
real part of the total permittivity such as what occurs in
superconductors [91].
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A total conductivity has been used in the literature to
model either the ac effects of the free charge and
partially bound free charge in hopping and tunneling
conduction, or as another way of re-expressing the
complex permittivity. Because some charge is only
partially bound, the distinction between conductivity
and permittivity can, at times, get blurred. This blurring
points out the mesoscopic property of the permittivity.
Most models of ac conductivity are based on charged
particles in potential wells where energy fluctuations
determine whether the particle can surmount a potential
barrier and thereby contribute to the conductivity. In
conducting liquids, human tissue, and water-based
semisolids the conductivity is generally flat with
increasing frequency until megahertz frequencies, and
then it increases, often in a nearly linear fashion.

There are a number of distinct models for σtot . The
Drude model of the complex conductivity of electrons
or ions in a metal is approximately modeled as

(94)

where γ0 is the collision frequency, N is the electron
density, m is the ion mass, and e is the electronic charge
[27]. Note that the dc conductivity is σdc = Ne2 /mγ0 .
The net dielectric response is a sum of the dipolar
contribution and that due to the ions, where
ε′e f f = ε′d – Ne2 /m (γ2

0+ ω2) and ε″(ω) = Ne2γ0 /mω (γ2
0

+ ω2) + ε″d(ω). Therefore, for metals, the real part of the
permittivity is negative for frequencies near the plasma

metals is usually well above 100 GHz. The conduct-
ivity is thermally active and can be modeled for some
ionic materials as [92]

(95)

where nc is the ion vacancy, b is the ion jump distance,
ν0 is a characteristic ion frequency, and ΔG is the
Gibb’s free energy.

For plasmas at high frequencies

(96)

For disordered solids, where hopping and tunneling
conduction takes place with a relaxation time τe , the ac
conductivity can be expressed as [93, 94]

(97)

8. Double Layers and Conducting
Materials Near Metal Interfaces

Conducting and semiconducting dielectric materials
at interfaces or metallic contacts can be influenced by
the effects of double layers. Measurements on conduct-
ing liquids are complicated by the effects of electrode
polarization, which are the direct result of the double
layers [95]. Double layers and electrode polarization
are due to the build up of anions and cations at the
interface of electrodes and conducting materials,
as shown in Fig. 8. Modeling ionic solutions near
electrodes is complicated, because the charge is mobile
and depends on the potential.
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Two conducting dissimilar materials can have differ-
ent electronic affinities. When these dissimilar materi-
als are in contact, a potential gradient frequently
develops between the materials. As a result an electri-
cal double layer forms at a material interface. This
interface could be between liquid and metal electrodes
or the layer between a biomolecule and a liquid. The
potential difference will attract ions of opposite charge
to the surface and repel like charges. For a double
layer, the charge density depends nonlinearly on the
applied potential and is modeled at low frequencies
by the Poisson-Boltzmann equation for the
potential [96, 97] (∇2ψ = −ρ(ψ)/ε). The potential
decreases roughly exponentially from the surface as
ψ(x) = ψ0 exp (– x /λD), where λD is the Debye screen-
ing length or skin depth. The region near the electrode
consists of the Stern layer and a diffuse region beyond
the Stern layer where the potential decays less rapidly.
It is known that the Poisson-Boltzmann equation is of
limited use for calculating the potential around many
biomolecules due to molecular interactions and the
effects of excluded volume [97].

At the interface of conductive materials and elec-
trodes, electrode polarization produces a capacitive
double-layer region in series with the specimen under
test. The presence of electrode polarization results in
ε′e f f being much greater than the value for the liquid by
itself. Because the electrode capacitance is not a
property of the material under test, but rather the inter-
face, it can be treated as a systematic uncertainty and
methods to remove it from the measurement can be
applied. Double layers also form at the metal interface
with semiconducting materials where the conductivity
is a function of applied voltage.

The effects of electrode polarization can strongly
affect dielectric measurements up to around 1 MHz, but
the effects can be measurable up into the low gigahertz
frequencies. Any electrode influencing the calculated
permittivity should be treated as a systematic source
of uncertainty. Alternatively, the permittivity with
the electrode effects could be called the effective
permittivity.

The effects of electrode polarization capacitance as
commonly analyzed with the following model [98]

(98)

(99)

where C and R are the measured capacitance and resist-
ance, Cp and Rp are the electrode double-layer capaci-
tance and resistance, and Cs and Rs are the specimen
capacitance and resistance. A way to partially eliminate
electrode polarization is to measure the capacitances C1

and C2 and resistances R1 and R2 at two separations d1

and d2 . Because Cp is the same for each measurement
and Cs can be scaled as Cs2 = (d1 /d2 )Cs1 , we can obtain
the specimen capacitance. Another way of minimizing
the effects of electrode polarization is to coat the
capacitor plates with platinum black [99]. This lessens
the influence of electrode polarization by decreasing
the second term on the right hand side of Eq. (98).
However, both the coating and two-distance methods
schemes do not completely solve this problem. For
biological liquids, often the buffer solution is first
measured by itself and then again with the added
biological material and the difference between the
measurements is reported.

For dielectric measurements, probably the best
approach is to bypass much of the electrode-polariza-
tion problem altogether and use a four-probe capacitor
system as shown in Fig. 9. The four-probe capacitance
technique overcomes electrode problems by measuring
the voltage drop away from the plates and thereby
avoiding the double layer [100].
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9. Relationships of the Permittivity
Components: Causality and
Kramers-Kronig Equations

Kramers-Kronig relations relate the real and imagi-
nary parts of the permittivity. These equations are a
result of causality and analytic functions. There are
many forms of the Kramers-Kronig conditions [101],
below are standard relationships

(100)

(101)

For example, if we neglect any dc conductivity, the
dc permittivity must satisfy

(102)

We should note that σdc is not causally related to the
permittivity and, therefore, before Kramers-Kronig
analysis is performed, the contribution of conductivity
to the loss should be subtracted.

As a consequence of causality, the permittivity
satisfies the condition ε∗(ω) = ε(– ω). Causality and
second law of thermodynamics requires that when
the response is averaged over a cycle, for a passive
system ε″(ω) > 0 and μ″(ω) > 0. However, ε′(ω) or
μ′ (ω) can be greater or less than zero. Also, the real part
of the characteristic impedance must be greater than
zero.

10. Static and Dipolar Polarization
10.1 Static Polarization

The total kinetic energy (K) plus potential energy of
a dipole in a static applied field is approximately

(103)

The probability that a dipole is aligned at angle θ to the
directing electric field is

(104)

The average moment for N dipoles is therefore

(105)

or

(106)

where L(x) = coth(x) – 1/x ≈ x/3 – x3/45 + x5/945... is
the Langevin function. At high temperatures or weak
fields, the Langevin function is approximated as

(107)

and in the approximation we assume |μ→e ||E|/kBT < 0.1.
Note that the model shows that the polarizing effect of
the applied field affects < cosθ >, and there is a lesser
effect on the direction of the individual dipole
moments. At room temperature this corresponds to an
electric field of about 3 × 107 (V/m), which is a very
strong field. In intense fields or low temperatures, higher-
order terms in the Langevin function must be included
[53].

Using a similar analysis, the magnetic moment for
noninteracting paramagnetic materials has the same
form as Eq. (107)

(108)

10.2 Deriving Relaxation Equations by
Analyzing Dipolar Orientation in
an Applied Field

Upon application of an electric field, dipole moments,
impurities, and vacancies can change positions in the
lattice potential wells. This is the origin of rotation,
conduction, and jump reorientation [53, 102].

Consider the density of N± molecules where there
are N± dipole moments that are aligned either parallel
(+) or antiparallel (–) to the applied field. The time
evolution of the numbers of dipoles is described by the
number of dipoles flipping one direction minus the
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number flipping the other direction characterized by the
transition rates ν± , where ν+ denotes the rate of going
from a + state to a – state

(109)

In equilibrium and in the absence of an electric field,
the number of transitions in either direction is the same
so that ν+N+ = ν– N– , where N+ + N– = N. In an electric
field, the transition rates are given by

(110)

where ν∞ is the maximum transition rate and the factor
3 is related to isotropic polarization pE → |μ→e ⋅ ΕΕ| /3. At
high temperatures and ν0 = ν∞ exp (– U0 /kBT )

(111)

Therefore, for molecules that each have a permanent
electric dipole moment μ→e , the net polarization is
P(t) = |μ→e |(N+ – N–) = |μ→e |(2N+ – N), and

(112)

The relaxation time is τ = 1/2ν0 = (1/2ν∞) exp (U0 / kBT).
In this model the susceptibility is

(113)

Therefore Eq. (112) reduces to the Debye equation

(114)

Note that such a simple model can describe to a
remarkable degree the polarization and yields a
relaxation time with a reasonable dependence on
temperature. This indicates the basic physics is correct.

11. Relaxation Times
11.1 Background

When a field is applied to a material, the material
responds by re-arranging charge, causing spin pre-
cession, and currents. The characteristic time it takes
for the response is called a relaxation time. Relaxation
times are parameters used to characterize both dielec-
tric and magnetic materials. Dielectric relaxation times
are correlated with mechanical relaxation times [103].
Magnetic relaxation in NMR and ESR is modeled by
spin-spin (T2) and spin-lattice (T1) relaxation times.

In the literature, dielectric relaxation times have been
identified for molecules and bulk materials. The first is
a single molecule relaxation time τs and the other is a
Debye mesoscopic relaxation time τD . For magnetic
nanoparticles in a fluid, where the magnetic moment is
locked in place in the lattice, the Brownian time
constant is defined as τB = 3νVH /kBT, where ν is the
fluid viscosity and VH is the hydrodynamic volume of
the particle [104]. The Neel relaxation time is for
crystals where the magnetic moment is free to rotate in
the field. Dielectric relaxation times are related to how
the dipole moments and charge are constrained by the
surrounding material. The characteristic relaxation time
for a polarized material that was in an applied field at
t = 0 to decay to a steady state is related to the coupling
between dipoles and details of the lattice. At high
frequencies, the electric response of a material lags
behind the applied field when the field changes faster
than the relaxation response of the molecules. This lag
is due to long and short-range forces and inertia. The
characteristic Debye relaxation time τD can be obtained
from the maximum of the loss peak in Eq. (61).
Relaxation times are usually defined through the decay
of the impulse-response function that is approximated
by a Debye response exp (– t /τ). Debye used Onsager’s
cavity model to show that τD / τs = (εs + 2) / (ε∞ + 2)
[105, 106]. Arkhipov and Agmon [105] showed that
τD / τs = (3kBT /μ2

dρc )(εs – ε∞)(2εs + ε∞)/εs , where ρc is
the density of molecules, and μd is the dipole moment.
In their review, Arkhipov and Agmon also discuss the
relationship between macroscopic and microscopic
relaxation times from various perspectives [105]. This
theory predicts that the macroscopic and microscopic
relaxation times are related by τD / τs ≈ (2εs + ε∞) / 3εs.
Debye showed that the microscopic relaxation time for
molecules of radius a is related to the viscosity η and
the friction constant ζ by τs = 4πa3η /kBT = ζ /2kBT . 
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The Arrenhius relaxation rate is modeled as
τ = τ0 exp (U /kBT ) . The Vogel-Fulcher relaxation time
is used to model relaxation near polymer glass transi-
tion temperatures as τ = τ0 exp (U /kB(T – T0 )). The
relaxation time can also be related to changes in the
activation entropy ΔS, Helmholtz energy of activation
ΔH, and free energy ΔF as τ = ( /kBT ) exp (ΔF /RT),
and the entropy of activation is related by ΔS =
(ΔH – ΔF) / T. Therefore, we have τ = (h / kBT ) exp
(ΔH /RT – ΔS /R). So, by fitting the relaxation times
obtained by dielectric measurements as a function of
temperature we can extract changes in the entropy ΔS
and the Helmholtz free energy ΔH for an activation
process.

The typical relaxation time T1 in NMR experiments
is longer than in EPR [107]. In EPR experiments, relax-
ation times are generally less than milliseconds. In
dielectrics, the relaxation times of liquids can be
picoseconds, as indicated in Table 2, but in some
glasses they can be seconds and longer. The character-
istic relaxation times have been found to change with
the frequency of the applied field [88]. This is due to
the restoring and frictional forces acting differently
under different field conditions. In the past researchers
have realized this and resorted to using phenomeno-
logical DRT models as in Eq. (69).

11.2 Relaxation Time Based Model in Fields of
Varying Frequency

A very general approach to modeling the suscepti-
bility can be obtained by the Laplace transform of the
time-invariant approximation to Eq. (38). This yields
a permittivity in terms of complex relaxation times
τ(ω) = τ′(ω) – iτ″(ω) [46]:

(115)

(116)

The assumption of this model is that at RF frequencies
the relaxation has a dependence on the frequency of the
driving field. This frequency dependence originates from
the applied field acting on the molecules in the material
that keeps the molecules in a nonequilibrium electro-
magnetic state. Equations (115) and (116) have the same
form as the Laplace transform of a linear harmonic oscil-
lator equation of motion. However, this model contains
additional information through the frequency depend-
ence of the relaxation times. For a real, frequency-inde-
pendent relaxation time (τ′ constant and τ″ = 0), Eq. (38)
is the Debye equation. In the special case where τ′ is con-
stant, the ensemble response function is of the form exp
(–t /τ′) and we have classical Debye relaxation. This can
be traced to the fact that the Debye model assumes there
is no inertia, and therefore, a purely damped motion of
dipoles. Performing the inverse Laplace transform of the
time-invariant approximation to Eq. (38) we obtain
another form for the polarization equation,

(117)

Equation (117) highlights the physics of the inter-
action with materials and is useful in determining the
underlying differential equation related to phenomeno-
logical models. For this equation the Debye model is
obtained if τ– (t) = τ0δ(t). Relaxation phenomenological
models such as Cole-Davidson can be related τ(ω).
Therefore the underlying differential equations can be
cast into the form of Eq. (117). Because they are
complex pairs, it is not possible to extract the time-
domain functions of τ′(ω) and τ″(ω) independently.

It is important to study the origin of the frequency-
domain components. Whereas τ′(ω) models the out-of-
phase behavior and loss, τ″(ω) models the effects of the
local field on the restoring forces. If τ″(ω) is positive it
is related to inertial effects. If τ″(ω) is negative, it is
related to the local field interaction that tends to
decrease the polarization through depolarization. The
relaxation times are

(118)
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Table 2. Relaxation Times of Common Liquids [105]

water (22 °C) 78.4 6.2 8.3 1.0
methanol (22 °C) 32.6 5.9 51.5 7.1
ethanol (22 °C) 24.3 4.5 163.0 9.0
1-propanol (22 °C) 20.4 3.7 329.0 15.0
2-propanol (22 °C) 19.4 2.4 59.0 ..
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(119)

In Fig. 10 we plot the relaxation times extracted from
dielectric measurements as well as measurements given
in Reference [108]. We see that the measured τ″(ω)
values are all negative. We see that for ethanediol, τ″ is
very small and τ′ is nearly frequency-independent.
Therefore ethanediol, is well modeled by the Debye
equation. The physical significance of τ′(ω) relates to
the effective time for the material to respond to an
applied electric field. τ″(ω) > 0 at resonance cor-
responds to an effective ensemble period of oscillation
and τ″(ω) < 0 corresponds to a characteristic time scale
for charge depolarization and screening effects. An
interpretation is that in relaxation the effects of the
local field on the short-range restoring forces and
screening may have a frequency dependence. This
frequency dependence can manifest itself as the
commonly observed frequency shift in the loss peak
relative to the Debye model. We also see that τ″ < 0 can
be interpreted as the effects of the local field on the
short-range electric restoring forces, which tend to
reduce the permittivity and modify the position of
the maximum in the loss curve relative to the Debye
maximum condition (ωτ′ = 1). The behavior for
τ″(ω) < 0 is analogous to what is seen in longitudinal
optical-phonon behavior that yields a local field that
tends to reduce polarization. Over frequencies where 

mass-related inertial interactions are important,
τ″(ω) > 0. This occurs in polaritonic resonances at
terahertz to infrared frequencies and in negative-index
materials. In this case the local field tends to enhance
the polarization through the effects of inertia that coun-
teract restoring forces [5]. When τ″ω = 1, the real part
of the susceptibility goes to zero, indicating the system
is going through resonance. In general, just as in
the Debye and other phenomenological models, the
relaxation times can depend on temperature
(A exp (U0 /kBT )).

11.3 Surface Waves

Electromagnetic surface waves occur in many appli-
cations. Surface waves can be supported at the interface
between dielectrics and conductors. These waves
travel on the interface, but decay approximately
exponentially away from the surface. There are many
types of surface waves, including ground waves and
surface plasmons polaritons (SPP) that travel at the
interface between a dielectric and conductor, surface
plasmons on metals, and Sommerfeld and Goubau
waves that travel on coated or uncoated wires. SPP’s
require the real part of the permittivity of the metal to
be negative [109]. A Goubau line guides a surface wave
and consists of a single conductor coated with dielectric
material [110]. A Sommerfeld surface wave propagates
as a TM mode around a finitely conductive single bare
conductor. Plasmonic-like surface waves can form
from incident microwave electromagnetic energy on
subwavelength holes in metal plates. We will examine
plasmonic surface waves in Sec. 14.2.

11.4 Electromagnetic Radiation

Classical electrodynamics predicts that accelerated
charged particles generate EM waves. This occurs in
antennas where charged particles oscillate to produce
radiation. Linearly or elliptically polarized radiation
waves are determined by the type of acceleration the
source charged particles undergo. If the charge particle
undergoes oscillation from a nonlinear restoring force,
the emitted radiation may not be monochromatic.

11.5 Thermal Noise and Blackbody Fields

Due to the continual Brownian motion of micro-
scopic charges, thermal Johnson noise fields are
produced over a broad distribution of frequencies [111,
112]. There are also many other sources of noise such
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as phase noise and shot noise. Thermal movement and
blackbody radiation are a source of electrical noise and
was described theoretically by Nyquist [112]. This
theory was expanded by Callen [113]. A blackbody has
an emissivity of near unity and is an excellent absorber
and emitter of radiation. The spectral distribution of
blackbody radiation follows the Planck distribution
for the energy density u (T, f ) = (8πh f 3 / c3 ) /
(exp (h f /kBT – 1)). Examples of blackbody radiation
include radiation from intergalactic space, as well as
black cavities with an aperture. Typical blackbody
materials have some free electrons and a distribution of
molecular resonant frequencies and, as a result, are
useful in converting optical energy into heat energy.
They are also good radiators of infrared thermal
energy. Most materials only partially reflect any
incident energy. Therefore, they do not radiate as much
power as a blackbody at the same temperature. The
ratio of the energy radiated by a material relative to that
of an ideal black body is the emissivity. In a frequency
band Δ f , the emissivity is defined as e = P / (kBTΔ f ). 
The emissivity satisfies 0 ≤ e ≤ 1. The brightness
temperature is TB = eT , where T is the physical
temperature. Nyquist/Johnson noise in the RF band
has only a weak frequency dependence. It is modeled
for voltage fluctuations in a transmission line termi-
nated by resistors R over a frequency band Δ f by
< ν2 > /R = 4kBTΔ f [112].

Radiometers in the RF band are usually receiving
antennas that collect noise power from the direction
they are pointed and infer the brightness temperature.
The goal of radiometry is to infer information about
the remote source of noise from the brightness temper-
ature [111].

Quantum-field theory models the vacuum as filled
by quantum fluctuations that contain a spectrum of
frequencies having energy (1/2) ω. In this model,
fluctuations give rise to virtual photons and sponta-
neous emission of short-lived particles. Virtual photons
and short-lived particles are allowed by the uncertainty
principle between energy and time: ΔEΔ t ≈ .

Vacuum fluctuations can produce attractive forces
between nanometer-spaced parallel electrodes. This
Casimir effect is commonly explained classically by
the cutoff of EM modes between the plates so that the
external radiation pressure exceeds the pressure
between the plates [114]. A more complete and satis-
factory description can be derived with quantum
mechanics. The force is extremely short range. It has
also been shown that the force can be made repulsive
by changing one of the plates from a metal to a dielec-
tric such as silica [115]. In addition, there has been

speculative research where NIM materials are used for
the microscopic plates to produce levitation of nano-
particles [116]. Casimir effects may play a role in
future modeling of microelectronics because the
electrode separations are close to where these effects
become important.

12. Magnetic Response
12.1 Overview of Magnetism

In this section, we will very briefly overview the
basic elements of magnetic phenomena needed in our
applications to RF interactions. Magnetism has a
quantum-mechanical origin intimately related to the
spin and angular momentum and currents of electrons,
nuclei, and other particles. Stern and Gerlach [4]
proved the existence of discrete magnetic moments by
observing the quantized deflection of silver atoms
passing through a spatially varying magnetic field.
Electrons orbiting a nucleus form a magnetic moment
as well as the intrinsic spin of the electron. Magnetic
moments are caused either by intrinsic quantum-
mechanical spin or by currents flowing in closed loops
m ∝ (current)(area).

Spins react to a magnetic field by precessing around
the applied field with damping [117]. For spins of the
nucleus, this precession forms the study of nuclear
magnetic resonance (NMR); for paramagnetic
materials it is called electron-spin or ESR or
electron-paramagnetic resonance or EPR; and for
ferromagnetic materials it is called ferromagnetic
resonance or FMR . The dynamics in spin systems are
tied phenomena such as spin precession, relaxation,
eddy currents, spin waves, and voltages induced by
domain-wall movements [7-9, 118].

Paramagnetism originates from spin alignment in an
applied magnetic field and relates to the competition
between thermal versus magnetic energy (m . B /kBT )
(see A in Fig. 11). Paramagnets do not retain significant
magnetization in the absence of an applied magnetic
field, since thermal motion tend to randomize the spin
orientations.

The origin of diamagnetism in materials is the orbital
angular momentum of the electrons in applied fields.
Diamagnetic materials usually do not have a strong
magnetic response, although there are exceptions. In
ferromagnetic materials, exchange coupling allows
regions of aligned spins to be formed [119]. Ferro-
magnetic and ferrimagnetic materials may have spin
resonances in microwave to millimeter wave frequen-
cies [120]. Ferrimagnetic materials consist of two
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overlapping lattices whose spins are oppositely direct-
ed, but with a larger magnetic moment in one lattice
than the other. Antiferromagnetism is a property of
many transition elements and some metals. In these
materials the atoms form an array with alternating spin
moments, so the average spin and magnetic moment
are zero. Antiferromagnetic materials are composed of
two interpenetrating lattices. Each lattice has all spins
more or less aligned, but the lattices, as a whole, are
inverse. Resonances in antiferromagnetic materials
may occur at millimeter wave frequencies and above.
Antiferromagnetic materials are paramagnetic above
the Neel temperature.

12.1.1 Two-State Spin System
In order to contrast decoupled spin response with

dielectric dipole response in Sec. 10.2, we will develop
the well-known statistical approach of noninteracting
paramagnetism. In a paramagnetic material, the net mag-
netic moment is the sum of individual moments in an
applied field. If the spin moments are σ± = ±μ and the
probability density of the spin being up or down in an
applied field is pi , then the net magnetic moment is [4]

(120)

where the probabilities of being in the low energy (–) or
high (+) energy states are

(121)

(122)

Therefore, for N spins and when μ→ . B /kBT << 1

(123)

In the case of isotropy < m > = Nμ 2B /3kBT . So we
obtain the same form as in the case of noninteracting
dielectrics in Eq. (107).

12.1.2 Paramagnetic Response With Angular
Momentum J

For atoms with angular momentum J with 2J + 1
discrete energy levels, the average magnetization can
be expressed in terms of the Brillioun equation BJ [4]

(124)

where x = g J μBB / kBT and BJ (x) = (2 J + 1) / 2 J
coth((2J + 1)x /2J ) – (1 /2J ) coth(x /2J ) and g is the
g-factor given by the Landé equation.

12.2 Magneto-Dielectric Response: Magneto-
Electric, Ferroelectric, Ferroic, and Chiral
Response

Researchers have found that in magneto-electric,
ferroic, and chiral materials the application of magnet-
ic fields can produce a dielectric response and the
application of an electric field can produce a magnetic
response (see for example [121]). These cross coupling
behaviors can be found to occur in specific material
lattices, layered thin films, or by constructing compos-
ite materials. An origin of the intrinsic magneto-electric
effect is from the strain-induced distortion of the spin
lattice upon the application of an electric field. When a
strong electric field is applied to a magneto-electric
material such as chromium oxide, the lattice is slightly
distorted, which changes the magnetic moment and
therefore the magnetic response. Extrinsic effects can
be produced by layering appropriate magnetic, ferro-
electric, and dielectric materials in such a way that an
applied electric field modifies the magnetic response
and a magnetic field modifies the electric response.
Chiral materials can be constructed by embedding
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Fig. 11. Simplistic summary of spin orientations for A) para-
magnetic B) ferromagnetic C) ferrimagnetic D) antiferromagnetic
materials.
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conducting spirals into a dielectric matrix. In artificial
magneto-electric materials the calculated permittivity
and permeability may be effective rather than intrinsic
properties. The constitutive relations for the induction
and displacement fields are not always simple and can
contain cross coupling between fields. For example,
D∼ (ω) = α↔1

. E∼ (ω) + α↔2
. B∼ (ω) , where α↔i are constitu-

tive parameters.

13. Electromagnetic-Driven Material
Resonances in Materials at RF
Frequencies

At the relatively longer wavelengths of RF frequen-
cies, (1 × 104 m to 1 mm), only a few classes of in-
trinsic resonances can be observed. Bulk geometric
resonances, standing waves, and higher-mode reso-
nances can occur at any frequency when an inclusion
has a dimension that is approximately equal to an
integral multiple of one-half wavelength in the materi-
al. These geometrical resonances are sometimes misin-
terpreted as intrinsic material resonances. Most of the
intrinsic resonant behavior in the microwave through
millimeter frequency bands are due to cooperative
ferromagnetic and ferrite spin-related resonances,
antiferromagnetic resonances, microwave atomic
transitions, plasmons and plasmon-like resonances, and
polaritons at metal-dielectric interfaces. Atoms such as
cesium have transition resonances in the microwave
band. Large molecules can also be made to resonate
under the application of high RF frequencies and
THz frequencies. NIM commonly use non-intrinsic split-
ring structure resonances together with plasma
resonances to achieve unique electromagnetic
response. At optical frequencies, individual molecules
or nanoparticles can sometimes be resonated directly or
through the use of plasmons.

Water has a strong relaxation in the gigahertz
frequency range and water vapor has an absorption
peak in the gigahertz range, liquid water has no dielec-
tric resonances in the microwave range. The resonances
of the water molecule occur at infrared frequencies at a
wavelength around 9 μm. In magnetic materials,
ferromagnetic spin resonances occur in the megahertz
to gigahertz to yielding MMW bands. Antiferro-
magnetic resonances can occur at millimeter frequen-
cies. Gases such as oxygen with a permanent magnetic
moment can absorb millimeter waves [122]. In the
frequency region from 22 to 180 GHz, water-vapor
absorption is caused by the weak electric dipole

rotational transition at 22 GHz, and a stronger
transition occurs at around 183 GHz [123].

If high-frequency fields are applied to ferrite materi-
als, there are relaxations in the megahertz frequencies,
and in the megahertz to MMW frequencies there are
spin resonances [119, 121, 124, 125].

14. Artificial Materials: Plasmons,
Super-Lensing, NIM, and Cloaking
Response

The term metamaterial refers to artificial structures
that can achieve behaviors not observed in nature.
NIMs are a class of metamaterials where there are
simultaneous resonances in the permittivity and perme-
ability. Many artificial materials are formed from
arrays of periodic unit cells formed from dielectric,
magnetic, and metal components, and when subjected
to applied fields, achieve interesting EM response.
Examples of periodic structures are NIM that utilize
simultaneous electric and magnetic resonances [126].
Metafilms, band filters, cloaking devices, and photonic
structures all use artificial materials. Artificial materials
are also used to obtain enhanced lensing and anomalous
refraction and other behaviors [65, 126-131]. A very
good overview is given in [128]. In the literature NIM
materials are commonly assumed to possess an intrin-
sic negative permittivity and permeability. However,
the resonator dimensions and relevant length scales
used to achieve this behavior may not be very much
smaller than a wavelength of the applied field [132].
Therefore, the continuous media requirement for
defining the permittivity and permeability becomes
blurred. The mapping of continuous media properties
onto metamaterial behavior can at times cause para-
doxes and inconsistencies [69, 133-137]. However, the
measured EM scattering response in NIM is achieved,
whether or not an effective permittivity and perme-
ability can be consistently defined. Because of the
inhomogeneity in the media, the permittivity and perme-
ability in some of these applications are effective para-
meters and spatially dispersive and not the intrinsic
properties that Veselago assumed for a material [26,
138]. In some metamaterials and metafilms where the
ratio of the particle size to the wavelength is not small,
boundary transition layers are typically included in the
model so that the terminology of effective permittivity
and permeability can be used. In Sec. 4.6, we described
the criterion of defining a polarization by a Taylor
series expansion of the charge density. The problem
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of whether these composite materials can be described
in terms of a negative index is complicated by the
issues described above. The measured permittivity
tensor is an intrinsic property and should not depend on
the field application or the sample boundaries, if the
electrodynamic problem is modeled correctly.

Pendry [127] introduced the idea of constructing a
lens from metamaterials that could achieve enhanced
imaging that is not constrained by the diffraction limit.
It should be noted that microwave near-field probes
also have the capability of subwavelength imaging by
using the near field around a probe tip (see Sec. 16).

14.1 Veselago’s Argument for NIM Materials With
Both ε′r(eff ) < 0 and μ′r(eff ) < 0

In this section we overview the theory behind NIM
[26]. The real parts of the permittivity and perme-
ability can be negative over a band of frequencies
during resonances. Of course, to maintain energy
conservation in any passive material, the loss-factor
part of the permittivity and permeability must always
be positive. This behavior has only been recently
exploited to achieve complex field behavior [26, 62,
67, 88, 127, 139].

Polarization resonance is usually modeled by a
damped harmonic-oscillator equation. The simple
harmonic-oscillator equation for the polarization P∼ (ω)
for single-pole relaxation can be written as Eq. (58).
For a time-harmonic-field approximation, the effective
dielectric susceptibility has the form

(125)

The real part of the susceptibility can be negative
around the resonance frequency (see Fig. 7). A similar
equation can apply for a resonance in a split-ring or
other resonator to obtain a negative real part of the
permeability.

In most electromagnetic material applications the
plane-wave propagation vector and group velocities are
in the same direction. Backward waves are formed
when the group velocity and phase velocity are in oppo-
site directions. This can be produced when the real parts
of the permittivity and permeability are simultaneously
negative. When this occurs, the refractive index is

Because of this result, researchers have argued that this
accounts for the anomalous refraction of waves through
NIMs, reverse Cherenkov radiation, and reverse
Doppler effect, etc.

Snell’s law for the reflection of an interface between
a normal dielectric and an NIM satisfies θinc = θreflection,
but the refracted angle in NIM is θtrans = sgn (nNIM)

the permittivity or the permeability are negative, then
damped field behavior is attained.

These periodic artificial materials do produce inter-
esting and potentially useful scattering behavior; how-
ever since they often involve resonances in structures
that contain metals, they are lossy [62]. There has
been debate in the literature over how to interpret the
observed NIM behavior, and some researchers believe
the results can be explained in terms of surface waves
rather than invoking NIM concepts [137].

The approach used to realize a negative effective
magnetic permeability is different from that for
obtaining a negative effective ε′r. Generally, split-ring
resonators are used to obtain negative μ′r , but recently
there has been research into the use of TM and TE
resonant modes in dielectric cubes [69] or ferrite
spheres to achieve negative properties [62, 141].
Dielectric, metallic, ferrite, or layered dielectric-
metallic inclusions such as spheres can be used to
achieve geometric or coupled resonances and therefore
simultaneous negative effective ε′ and μ′ [62]. A com-
monly used approach to obtain a negative permittivity
is to drive the charges in a wire or free charge in a
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Fig. 12. The regions of the permittivity-permeability space for
different metamaterial behaviors.
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semiconductor or plasma near resonance. Dielectric
resonance response occurs in semiconductors in the
terahertz to infrared range and in superconductors in
the millimeter range. The real part of the permittivity
for a plasma, according to the high-frequency Drude
model, can be negative (ε = ε0(1 – ω2

p /ω2)).
There are a number of metrology issues related to

NIM. These include the problem of whether the field
behavior should be modeled as the result of negative
intrinsic permittivity and permeability and negative
index or instead be treated as a scattering problem.
This problem is related to the wave length of the
applied fields versus the parameters of the embedded
resonators. Although the scatterers are generally
smaller than a wavelength of the applied field, they
are not always significantly smaller. When the lattice
spacing a between particles satisfies [142]

defined [62]. Even within these bounds the properties
are not intrinsic permittivity and permeability as
defined previously and are spatially dispersive. A
second issue is the determination of the NIM specimen
length and boundaries to be used to model the array of
macroscopic scatterers (see [69] and references therein
for an analysis of this problem). Another area of debate
is where in the resonance region is a permit-
tivity and permeability well defined.

14.2 Plasmonic Behavior

At the interface between a dielectric and metal an
EM wave can excite a quasiparticle called a surface
polariton (see Fig. 13). Plasmons are charge-density
waves of electron gases in plasmas, metals, or semicon-
ductors. Surface polariton plasmons travel on the

interface between a dielectric and a conductor,
analogous to the propagation of the Sommerfeld
surface wave on a conductor/dielectric interface.
Plasma polaritons decay exponentially away from the
surface. The effective wavelengths of plasmons are
much shorter than that of the incident EM field and
therefore plasmons can propagate through structures
where the incident radiation could not propagate
through. This effect has been used in photonics and in
microwave circuits through the use of metamaterials.
For example, thin metal films can be embedded in
dielectrics to form dielectric waveguides. Plasmonics is
commonly used for imaging where the fields are used
to obtain a sub-wavelength increase in resolution of
10 to 100 times. Colors in stained glass and metals are
related to the plasma resonance frequency, due to the
preferred reflection and absorption of specific wave-
lengths. High-temperature superconductors also have
plasmonic behavior and a negative ε′r due to the
complex conductivity [91]. If small metallic particles
are subjected to EM radiation of the proper wavelength,
they can confine EM energy and resonate as surface
plasma resonators. Plasmonic resonances have also
been used to clean carbon nanotubes and enhance other
chemical reactions by thermal or nonthermal activa-
tion. Plasmons have been excited in metamaterials by
use of a negative permeability rather than negative
permittivity [143].

Bulk Plasmons

Maxwell’s equations with no source-current densi-
ties can be used to obtain

(126)

If E ∝ e iωt−ikz , the dispersion relation is

(127)

For transverse plane waves k . E = 0, and therefore
k2 = εr (k,ω)ω2 /c2. For longitudinal waves εr (k,ω) = 0
[144] (this condition ε(ω) = 0) also implies the
Lyddane-Sachs-Teller relation [102] for the ratio of the
longitudinal to transverse phonon frequencies that
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From Eq.(62), in the time domain for the case of
no loss, and P(t) = – Nex (t), where N is the density
of electrons, we obtain the equation for a harmonic
oscillator for bulk longitudinal plasmon oscillations,
d 2x /dt 2 = – ω2

p x . The permittivity of a plasmon can be
modeled as

(128)

Below the plasmon frequency
plasma is attenuative and follows the skin-depth
formulas of a metal.

Above the plasma frequency, the real part of the
permittivity becomes negative.

Surface Plasmons

Surface plasmon polaritons [144] can travel at the
interface of a metal and dielectric to produce surface
wave guiding. Plasmonic surface waves have fields that
decay rapidly from the surface interface. For example,
for a 1 μm excitation wavelength, the waves can travel
over 1 cm, leading to the possibility of applications in
microelectronics. Surface plasmonic EM waves can be
squeezed into regions much smaller than allowed by
the diffraction limit. Obtaining the negative effective
ε′rp for plasmons in the megahertz through MMW range
would require the use of NIM. Some applications of
plasmonic behavior can also be tuned by a dc external
magnetic field, and the applied magnetic field produces
a plasmon with a tensorial permittivity.

For surface plasmons, the effective wavelengths of
the plasmons can be much less than that of the exciting
EM fields due to the difference in sign of the permit-
tivities in a metal and dielectric. For example, for a
plasmon at an interface between a metal and a dielec-
tric substrate, if the permittivity of the plasmon is ε′rp

and that of the substrate is ε′rd , then the dispersion

When R (ε′rp) < 0 and ⏐R (ε′rp)⏐ is slightly larger than
ε′rd , then we see that the wavelength becomes very
short in comparison to that of the applied field. This is
also attained by application of laser light to nanoparti-
cles to obtain a resonant state. However, this can also
happen in coupled microwave resonant structures.

14.3 Transmission Through Subwavelength
Apertures

Under certain conditions, electromagnetic radiation
has been observed to pass through subwavelength
apertures [145-147]. In extraordinary optical (EOT) or
millimeter wave (EMT) transmission, free-space EM
waves impinging on a metal plate with small holes
transmits more energy than would be expected by a
traditional analysis [148]. At optical frequencies, this
transmission is mediated by surface plasmons. At MW
and MMW frequencies, plasmons are not formed on
homogeneous conducting metal plates. However,
plasmon-like behavior can be formed by an appropriate
selection of holes, metal plate thickness, or corru-
gations to produce a behavior that simulates surface
plasmons. These plasmons-like features that are some-
times referred by the jargon “spoof plasmons”, can be
the origin of extraordinary transmission through the
holes in metal plates at MW to MMW frequencies.

14.4 Behaviors in Structures Where ε′r(e f f ) → 0

There are applications where a material is construct-
ed in such a way so that the real part of the
“effective” permittivity is close to 0 (ENZ) (see Fig. 7
as ε′r → 0). This is closely related to plasmon-like
behavior. In this case, the EM behavior simulates static
behavior in that ∇ × H = 0 and ∇ × E = iωμH, which
implies ∇2E = 0. In this case, the phase velocity
approaches infinity and the guided wavelength
becomes infinite, which is analogous to cutoff in a
waveguide (λc) [47]. This type of behavior can be
achieved for a waveguide near cutoff. The equation
for the guided wavelength in a waveguide is

(129)

where λc is the cutoff wavelength of the guide. Due to
the long effective wavelength near cutoff, the phase of
the wavefront changes minimally. Because the effective
permittivity goes through zero near resonance, we
can think of ENZ as a resonance condition similar to
the propagation cutoff in a waveguide when there is
resonance in the transverse plane. This type of behavior 
is achieved, for example, if we have a low-loss dielectric 

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

35

1 .p
2

0 2

⎛ ⎞ω
⎜ ⎟ε(ω) = ε −
⎜ ⎟ω⎝ ⎠

2
0 = / , thep Ne mω ε

relation is 2 / ( / ) /( )  [144].rd rp rd rpk c= π λ = ω ε ε ε + ε

2 22

2

2 ,
2 1μ

π λλ = =
⎛ ⎞ ⎛ ⎞ω π λε − −⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠ ⎝ ⎠

g

r r
c cc

http://dx.doi.org/10.6028/jres.117.001



of length L that completely fills the cross section of a
waveguide (see Fig. 24). Near the cutoff frequency the
material could be thought of as having an effective per-
mittivity ε′r (e f f ) ≈ 0. This same behavior is reminiscent of
a cavity, because as the transmission attains a maximum,
reflection is a minimum, and the reactance goes to 0 near
resonance. The ε′(e f f ) in this model violates the condition
for an intrinsic permittivity since the applied field
wavelength (λ = 1/ f √εμ ), must be much larger than the
feature size. It has been argued that in ENZ, unlike in a
normal wire, the displacement current dominates over
the charge current in transporting the EM waves [146].
There could be analogous effective permeability going to
zero μ′r (e f f ) → 0 (MNZ) behavior.

14.5 Modeling Electrical Properties to Produce
Cloaking Behavior

Recently, there have been many research papers that
examine the possibility of using the electrical properties
of artificial materials to control the scattering from an
object in such a way as to make the object appear invis-
ible to the applied EM field [129, 130, 149]. This is dis-
tinct from radar-absorbing materials, where the applied
field is absorbed by ferrites or layered, lossy materials.
Research in this area uses the method of transformation
optics [149, 150] to determine the material properties
that produce the desired field behavior. In order to exhib-
it a typical cloaking property, Shivola [151] derived
simple equations for a dielectric-layered sphere that are
assigned permittivities to produce a nearly zero effective
polarizability. Recently, complex arrangements of non-
resonant metamaterials have been designed by inverse
optical modeling to fabricate broadband electromagnetic
cloaks [129, 152].

15. Macroscopic to Mesoscopic Heating
and Electromagnetic-Assisted
Reactions

15.1 Overview of EM Heating
15.1.1 Dielectric and Magnetic Heating

In EM wave interactions with materials, some of the
applied energy is converted into heat. The heating that
takes place with the application of high-frequency
fields is due to photon-phonon processes modeled by
the friction caused by particle collisions and resistance
to dipole rotation. Over the RF spectrum, heating may
be volumetric at low frequencies and confined to
surfaces at high frequencies. Volumetric heating is due
to the field that penetrates into the material producing
dissipation through the movement of free ions and the
rotation of dipolar molecules. Nanocomposites can be
heated volumetrically by RF EM fields, lasers, and
terahertz applicators. Since the skin depth is long at
low frequencies, the heating of nanoparticles is not
efficient. In the microwave band the heating of very
small particles in a host material is limited by the loss
and density of particles in the material, the power level
of the source, and the diffusion of heat to the surround-
ings. Plasmon resonances in the infrared to visible
frequencies can be used to locally heat particles [153].
At high frequencies, heat may be absorbed locally in
particles in slow modes where there may be a time lag
for heat to dissipate into the phonon bath when the
fields are removed.

The history of practical RF heating started in the era
when radar was being developed. There are stories of
where engineers sometimes heated their coffee by
placing it near antennas. Also there are reports a
researcher working on a magnetron that noticed that the
candy bar in his pocket had melted when he was near
the high-frequency source.

In a microwave oven, water and bound water are
heated by the movement of free charge and non-
resonant rotation [154]. Because the water molecules at
these frequencies cannot react in concert with the field,
energy is transferred from the field energy into kinetic
energy of the molecules in the material. In dielectric
materials at low frequencies, as frequencies increase
into the HF band, the rotations of the molecules tend to
lag the electric field, and this causes the electric field to
have a component in phase with the current. This is
especially true in liquids with hydrogen bonding, where
the rotational motion of the bonding is retarded by the
interconnections to other molecules. This causes
energy in the electric and magnetic fields to be convert-
ed into thermal energy [155]. Some polymer molecules
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that have low friction, such as glycerol in solution, tend
to rotate without significant molecule-molecule inter-
actions and therefore produce little thermal energy.

The power dissipated in a bulk lossy material in a
time-harmonic field is

(130)

The total entropy produced per unit time at a temper-
ature T is P(ω,T ) /T. Equation (130) is modified for
very frequency-dispersive materials [116]. Dielectric
losses in ohmic conduction and Joule heating originate
in the frictional energy created by charges and dipoles
that are doing work against nonconservative restoring
forces. Magnetic losses include eddy currents,
hysteresis losses, and spin-lattice relaxation. Some of
the allocated heating frequencies are given in Table 3.

Heating originates from dielectric and magnetic loss
and the strength of the fields. For magnetic materials
the losses relate to μ″(ω) and σdc . In high-frequency
fields, magnetic materials will be heated by both
dielectric and magnetic mechanisms [104, 156]. If
applicators are designed to subject the material to
only magnetic or electric fields, then the heating will
be related only to magnetic or dielectric effects,
respectively.

When studying dielectric heating we need to also
model the heat transport during the heating process.
This is accomplished by use of the power dissipated as
a source in the heat equation [157]. The transport of
heat through a material is modeled by the thermal
diffusivity αh = κ /ρdcp , where ρd is the density and κ is
the thermal conductivity. In order to model localized
heating, it is necessary to solve the Fourier heat
equation and Maxwell’s equations with appropriate
boundary conditions. The macroscopic heat transfer
equation is

(131)

where κ↔ is the thermal conductivity dyadic. The mass
density is ρd and the specific heat is cp . For nano-
systems, the heat transfer is more complicated and may
require modeling phonon interactions. Also, the above
heat transfer expression is only approximate for
nanoscale materials. The temperature rise obtained by
application of EM energy to a material can be estimat-
ed by use of the power dissipation relation in Eq. (130).
When the temperature is changed by ΔT , the thermal
energy-density increase is Qh = ρdcp ΔT . The power
dissipated per unit volume by an electric field interact-
ing with a lossy dielectric material is Pd = (1/2)σ|E|2,
where σ is the conductivity. Therefore, the temperature
rise in a specimen with density ρm through heating with
a power Pd for a time Δt is

(132)

The heating rate is determined by the field strength,
frequency, and the loss factor. From the equations for

see that fields at lower frequencies will penetrate more

same dissipative power densities as those at higher
frequencies, the electric field strength at a lower fre-
quency would have to increase. For example, to obtain
the same power densities at two different frequencies
we must have (ε1″(ω1)ω1 / ε2″(ω2)ω2 = |E2|2 / |E1|2).

The unique volumetric heating capability by EM
fields over broader ranges of frequencies should
stimulate further applications in areas such as
recycling, enhanced oil recovery, and as an aid to
reactions.
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Table 3. Heating Frequencies

Frequency (MHz) Wavelength (cm)

13.56 2200
433.92 69
914 33
2450 12
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Table 4. Radiation Classes and Approximate Photon Energies 

Type Frequency (Hz) Photon energy (J)

γ-rays 3 × 1020 1.9 × 10– 13

X-rays 3 × 1016 1.9 × 10– 14

Ultraviolet 1 × 1015 6.4 × 10– 19

Visible light 6 × 1014 4.0 × 10– 19

Infrared light 3 × 1012 2.0 × 10– 22

Microwave 2 × 109 6.0 × 10– 25

High frequency (HF) 1 × 106 6.4 × 10– 28
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15.1.2 Electromagnetic-Assisted Reactions

When RF waves are applied to assist a chemical
reaction, or polymer curing, the observed rate enhance-
ment is due primarily to the effects of microscopic and
volumetric heating. Because chemical reaction rates
proceed in an Arrenhius form τ ∝ exp (E /kBT ), small
temperature increases can produce large reductions in
reaction times. The kinetics of chemical reaction rates
is commonly modeled by the Eyring equation,

(133)

where h is Planck’s constant, ΔG = ΔH – TΔS is the
Gibb’s free energy, H is Helmholtz’s free energy, ΔS
denotes changes in entropy, and R is the gas constant.
A plot of ln (keyr / T ) = – ΔH / RT + ΔS / R + ln (kB / h)
versus 1 /T can yield ΔS, ΔH, and possibly kB /h.

One would expect that heat transfer by conduction
would have the same effect on reactions as microwave
heating, but this is not always found to be true. Part of
the reason for this is that thermal conduction requires
strong temperature gradients, whereas volumetric
heating does not require temperature gradients.
Because it does not depend on thermal conduction, an
entire volume can obtain nearly the same temperature
simultaneously without appreciable temperature
gradients. In addition, some researchers speculate on
non-thermal microwave effects that are due to the
electric field interacting with molecules in specific
ways that modify the activation energy through
changes in the entropy [158, 159]. Avenues that have
been proposed for nonthermal reactions may be related
to dielectric breakdown that causes plasma of photons
to be emitted, causing photo-reactions. Another avenue
is related to the intense local fields that can develop
near corners or sharp bends in materials or molecules
that cause dielectric breakdown.

Typical energies of microwave through x-ray
photons are summarized in Table 4. Covalent bonds
such as C-C and C-O bonds have activation energies of
nearly 360 kJ /mol, C-C and O-H bonds are in the
vicinity of 400 kJ /mol, and hydrogen bonds are around
4 to 42 kJ /mol. Microwaves are from 300 MHz to
30 GHz and have photon energies from 0.0001 to
0.11 kJ/mol. Therefore, microwave photon bond-
breaking events are rare. Nonthermal microwave
effects, therefore, are not likely due to the direct inter-
action of microwave photons with molecules and, if
they occur at all, and must have secondary origins such

as the generation of intense local fields that produce
localized dielectric breakdown or possibly EM-induced
changes in the entropy. Most of the effects seen in
microwave heating are thermal effects due to the
volumetric heating of high-frequency fields [160].

Microwave heating can result in superheating where
the liquid can become heated above the typical boiling
point. For example, in microwave heating, water can be
heated above its boiling temperature. This is due to the
fact that in traditional heating, bubbles form to produce
boiling, whereas in microwave heating the water may
become superheated before it boils.

15.2 Heat Transfer in Nanoscale Circuits

In microelectronic circuits, higher current densities
can cause phonon heating of thin interconnects that can
cause circuit failure. This heating is related to both the
broad phonon thermal bath and possibly slow thermal
modes where thermal energy can be localized to
nanoscale regions [161, 162]. New transistors will have
an increased surface-to-volume ratio and, therefore, the
power densities could increase. This, combined
with the reduced thermal conductance of the low
conductivity materials and thermal contact resistance
at material interfaces, could lead to heat transport
limitations [162, 163].

15.3 Heating of Nanoparticles

When a large number of metallic, dielectric, or
magnetic micrometer or nanometer particles in a host
media are subjected to high-strength RF EM fields,
energy is dissipated. This type of EM heating has been
utilized in applications that use small metallic particles,
carbon black, or palladium dispersed in a material to act
as chemical-reaction initiators and for selective heating
in enhanced drug delivery or tumor suppression [164,
165]. Understanding the total heat-transfer process in
the EM heating of microscopic particles is important. A
number of researchers have found that, due to the
thermal conduction of heat from nanoparticles and the
small volumes involved and the large skin depths of RF
fields, the nanoparticles rapidly thermalize with the
phonon bath and do not achieve temperatures that devi-
ate drastically from the rest of the medium [166]. Only
when there is an appropriate density of particles, is
heating enhanced. There have recently been reports
that thermal energy can accumulate in nanoscale to
molecular regions in slow modes, and it can take
seconds to thermalize with the surrounding heat bath
[166-169]. In such situations, regions may be unevenly
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heated by field application. However, thermal conduc-
tion will tend to smooth the temperature profile within
a characteristic relaxation time. Lasers can selectively
heat micrometer-size particles and by use of plas-
monics lasers can heat conducting nanoscale
particles.

15.4 Macroscopic and Microscopic
High-Frequency Thermal Run-Away

The dielectric loss and thermal conductivity of a
material may possess a temperature dependence so that
the loss increases as temperature increases [170]. This
is due to material decomposition that produces ions as
the temperature increases and results in more loss.
Thermal run away can lead quickly to intense heating
of materials and dielectric breakdown. The temperature
dependence of thermal run away has been modeled
with the dielectric loss factor as εr″ = α0 + α1 (T – T0 )
+ α2(T – T0 )2, where T0 is a reference temperature and
αi are constants [171].

16. Overview of High-Frequency
Nanoscale Measurement Methods

In the past few decades, a number of methods have
been developed to manipulate single molecules and
dipoles. Methods have been implemented to move,
orient, and manipulate nanowires, viruses, and proteins
that are several orders of magnitude smaller than cells.
These methods allow the researcher to study the electri-
cal and mechanical properties of biological compo-
nents in isolation. Molecules and cells can be mani-
pulated and measured in applied fields using dielec-
trophoresis, microwave scanning probes, atomic force
microscopy, acoustic devices, and optical and magnet-
ic tweezers. Some of the methods use magnetic or
electric fields or acoustic fields, others use the EM field
radiation pressure, and others use electrostatic and van
der Waals forces of attraction [139, 172]. Microfluidic
cells together with dc to terahertz EM fields are
commonly used to study microliter to picoliter volumes
of fluids that contain nanoparticles [173-175]. Surface
acoustic waves (SAW) and bulk acoustic waves (BAW)
can be used to drive and enhance microfluidic process-
es. Since there is a difference of wave velocities in a
SAW substrate and the fluid, acoustic waves can be
transferred into the fluid, to obtain high fluid velocities
for separation, pumping, and mixing.

Due to symmetry and charge neutrality, a polarizable
particle in a uniform electric field will experience no
net force. If a material with a permanent or induced
dipole is immersed in an electric field gradient, then a
dielectrophoretic force on the dipole is formed, as
indicated in Fig. 15 [176]. In a nonuniformelectric
field, the force on a dipole moment p is F = (p . ∇)E.

From this the following equation for the dielectro-
phoresis force on a small sphere of radius r of permit-
tivity εp in a background with permittivity εm has be
derived [177, 178]

(134)

This force tends to align the molecule along the field
gradient. The force is positive if εp > εm. For dispersive
materials, the attraction or repulsive force can be varied
by the frequency. Dielectrophoresis is commonly used
to stretch, align, move, and determine force constants
of biomolecules such as single-stranded and double-
stranded DNA and proteins [179]. Dielectrophoresis
can also be used to separate cells or molecules in a
stream of particles in solution. Usually, dielectro-
phoretic manipulation is achieved through micro-
fabricated electrodes deposited on chips. For dispersive 
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materials, where the permittivity changes over the
frequency band of interest, there is a cross-over
frequency where there is no force on the molecule.
The approximate force, due to diffusion forces from
particle gradients on a particle with a dimension d, is
Fb = kBT /d. For micrometer particles, the dielectro-
phoretic field gradients required to overcome this force
is not large. However, for nanoscale particles this field
gradient is much larger.

Spherical particles can be made to rotate through
electrorotation methods [177]. This motion is produced
by a rotating electric field phase around a particle. The
dipole induced in the particle experiences a net torque
due to the dielectric loss that allows the dipole forma-
tion to lag the rotating field, as shown in Fig. 16. The
net torque is given by N = p × E. For particles εp in a
matrix εm the torque is [177]

(135)

Optical tweezing originates from the EM field gra-
dient obtained from a laser source that produces a field
differential and results in a force on particles. This
effect is similar to dielectrophoresis. The strength of the
radiation pressure on particles is a function of the size 

of the particles and the wavelength of the laser light
[180]. Molecules can also be studied by magnetic tweez-
ers with magnetic-field gradients. By attaching magnetic
particles to molecules it is possible to stretch molecules
and determine force constants. Opto-plasmonic tweezers
use radiation from resonant electrons to create patterned
electric fields that can be used through dielectrophoresis
to orient nanoscale objects.

Atomic force microscopy (AFM) is based on
cantilevers. In AFM the force between the probe tip and
the specimen is used to measure forces in the
micronewton range. An AFM probe typically has can-
tilever lengths of 0.2 mm and a width of around 50 μm.
An AFM can operate in the contact mode, noncontact,
or tapping mode. Force information of the interaction
of the tip with a material is obtained by means of
cantilever bending, twisting, and, in the noncontact
mode, by resonance of the cantilever.

In the microwave range, near-field microwave
scanning probes are commonly used. These probes
have proved valuable to measure the permittivity and
imaging on a surface of a thin film at subwavelength
resolution. These needle probes usually use near-field
microwaves that are created by a resonator above the
probe, as shown in Fig. 17. A shift in resonance
frequency is then related to the material properties

under test through software based on a theoretical
model. Therefore, most of these probes are limited to
resonant frequencies of the cavity. Continuous-wave
methods based on microstrip tips have also been
applied.
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16.1 Properties and Measurement of Dielectric
Nanomaterials

Nanomaterials could consist of composites of
nanoparticles dispersed in a matrix or isolated particles.
A mixture of conducting nanoparticles dispersed into a
matrix sometimes yields interesting dielectric behavior
[23, 181]. Lewis has noted that the interface between the
nanoparticle and matrix produces unique properties in
nanocomposites [23]. Interfaces and surface charges are
a dominant parameter governing the permittivity and
loss in nanocomposites [23, 181, 182]. Double layers
(Sec. 8) near the particle surface can strongly influence
the properties [23]. In addition, conductivity in some
nanoparticles can achieve ballistic transport.

In order to model a single dielectric nanoparticle in an
applied field the local field can be calculated, as summa-
rized in Sec. 4.3. Kühn et al. [59] studied the local field
around nanoparticles, and they found that use of the
macroscopic field for modeling of a sphere containing
nanoparticles was not valid at below 100 nm. In order to
model small groups of nanoparticles, they found that the
effects of the interface required the use of local fields
rather than the macroscopic field.

When individual nanoparticles are subjected to EM
fields, the question arises of whether it is possible to
define a permittivity of the nanoparticle or whether an
ensemble of particles is required. Whether permittivity
of a nanoparticle is well defined depends on the
number of dipole moments within the particle. If we use
the analogy of a gas, we assume that the large number of
gas molecules together with the vacuum around the par-
ticles constitutes a bulk permittivity. This permittivity
does not apply to the individual gas molecules, but rather
to the bulk volume. When individual nanoparticles con-
tain thousands of dipoles, according to criteria of permit-
tivity developed in Sec. 4.6, long-wavelength fields
would allow defining a permittivity of the particle and a
macroscopic field. However, such a permittivity would
be  spatially varying due to interfacial effects, and the
definition would break down when there are insufficient
particles to perform an ensemble average [59].

16.2 Electrical Properties and the Measurement of
Nanowires

Nanowires are effectively one-dimensional entities
that consist of a string of atoms or molecules with a
diameter of approximately 10–9 meters. Nanowires may
be made of TiO2 , SiO2 , platinum, semiconducting com-
pounds such as gallium nitride and silicon, single
(SWNT) or multi-wall (MWNT) carbon nanotubes, and

inorganic and organic strings of molecules such as
DNA [183-188]. Because they are effectively ordered
in one dimension, they can form a variety of structures
such as rigid lines, spirals, or zigzag pattern. Carbon
nanotubes that have lengths in the millimeters have
been constructed [189].

At these dimensions, quantum-mechanical effects
cannot be totally neglected. For example, the electrons
are confined laterally, which influences the available
energy states like a particle in a one-dimensional box.
This causes the electron transport to be quantized and
therefore the conductance is also quantized (2e2 /h).
The impedance of nanoconductors is on the order of the
quantum resistance h /e2, which is 25 kΩ. For SWNTs,
due to band-structure degeneracy and spin, this is
reduced to 6 kΩ. The ratio of the free-space impedance
to the quantum impedance is two times the fine
structure constant 2α . This high impedance is
difficult to probe with 50 Ω systems [190], and deposit-
ing a number of them in parallel has been used to
minimize the mismatch [191].

The resistance of a SWNT depends on the diameter
and chirality. The chirality is related to the tube having
either metallic or semiconducting properties. For
device applications such as nanotransistors, the
nanowires need to be either doped or intrinsic semi-
conductors. Semiconducting nanowires can be connect-
ed to form p-n junctions and transistors [192].

Many nanowires have a permanent dipole moment.
Due to the torque in an electric field, the dipole will
tend to align with the field, particularly for metallic and
semiconducting nanotubes [193].

16.3 Charge Transport and Length Scales

Electrical conduction through nanowires is strongly
influenced by their small diameter. This constriction
limits the mean free path of conduction electrons [88,
194]. For example in bulk copper the mean free path is
40 nm, but nanowires may be only 1 to 10 nm in
diameter, which is much less than a mean free path and
results in constriction of the current flow.

Carbon nanotubes can obtain ballistic charge trans-
port. Ballistic transport is associated with carrier flow
without scattering. This occurs in metallic nanowires
when the diameter becomes close to the Fermi wave-
length in the metal. The electron mean-free path for a
relaxation time τe is le = ντe , and if le is much larger
than the length of the wire, then it is said to exhibit
ballistic transport. Carbon nanotubes can act as anten-
nas and can have plasmonic resonances in the low
terahertz range.
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The Landauer-Buttiker model of ballistic transport
was developed for one-dimensional conduction of
spinless/noninteracting electrons [195, 196]. This
model has been applied to nanowires.

Graphene has shown promise for construction of
transistors due to its high conductivity, but is hampered
by defects. The very high carrier mobility of graphene
makes it a candidate for very high speed radio-
frequency electronics [197].

16.4 Distributed Parameters and Quantized
Aspects

A high-frequency nanocircuit model may need to
include the quantum capacitance and kinetic and
magnetic inductance in addition to the classical para-
meters. The magnetic inductance per unit length
for a nanowire of permeability μ of diameter d and a
distance s over a ground plane is given by [189]

The kinetic inductance due to quantum effects is

16 (nH/μm). At gigahertz frequencies, the kinetic
inductance is not a dominant contribution to the trans-
mission line properties [189]. The electrostatic capaci-
tance between a wire and ground plane in a medium

typically, 400 (aF/μm). The electrostatic capacitance is
found to dominate over the quantum capacitance at
gigahertz frequencies. At terahertz frequencies and
above they are of the same order of magnitude, and
both should be included in calculations for nanowires.
Burke notes that the resistance and classical capaci-
tance dominates over the quantum inductance and
capacitance and are not important contributions at giga-
hertz frequencies, but may be important at terahertz
frequencies [189]. The wave velocity in nanowires is
approximated by

(136)

The quantum characteristic impedance is

(137)

If the noninteracting electrostatic and quantum
impedance are combined, we have

(138)

Whereas the free-space impedance is 377 Ω, the quan-
tum capacitance and inductance of carbon nanotubes
yields an impedance of approximately 12.5 kΩ.

The resistivity of nanowires and copper are generally
of the same order of magnitude. The ballistic transport
properties at small scales represents an advantage; how-
ever, the resistance is still quite high. Copper intercon-
nects have less resistance until the conductor sizes drop
below about 100 nm; currently the microelectronic
industry uses conductors of smaller size. This is an
origin of heating [14, 198]. Because the classical resist-
ance is calculated from R /L = ρ /A, where ρ is resistivi-
ty, L is length, and A is the cross-sectional area, the small
area of a SWNT limits the current and increases the
resistance per unit length and the impedance. Due to the
high impedance of nanowires, single nanowires have
distinct disadvantages; for example, carbon nanotubes
may have impedances on the order of 104 Ω. Bundles of
parallel nanowires could form an interconnect [191].
Tselev et al. [191] performed measurements on bundles
of carbon nanotubes that were attached to sharp metal
tips by dielectrophoresis on silicon substrates. Electron-
beam lithography was used to attach conductors to the
tubes. High-frequency inductance measurements from
10 MHz to 67 GHz showed that the inductance was
nearly independent of frequency. In modeling nanoscale
antennas made from nanowires, the skin depth as well as
the resistance are important parameters [189].

17. Random Fields, Noise, and
Fluctuation-Dissipation Relations

17.1 Electric Polarization and Thermal Fluctuations

As transmission lines approach dimensions of tens of
nanometers with smaller currents, thermal fluctuations
in charge motion can produce small voltages that can
become a significant source of noise [199]. The random
components of charge currents, due to brownian
motion of charges, produce persistent weak random
EM fields in materials and produces a flow of noise
power in transmission lines. These fields contribute to
the field felt by the device. Random fields also are
important in radiative transfer in blackbody and non-
blackbody processes.
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Thermal fluctuations in the dipole moments in dielec-
tric and magnetic materials influence the polarization
and are summarized in the well known fluctuation-dis-
sipation relationships. These relationships are satisfied
for equilibrium situations. Equilibrium is a state where
the entropy is a maximum and macroscopic quantities
such as temperature, pressure, and local fields are well
defined. Fluctuation-dissipation relationships can be
obtained from the linear-response formalism (Sec. 4.4)
that yields the susceptibility in terms of the Fourier
transform of the associated correlation functions. By
use of Eq. (30), an expression can be written for the
susceptibility in terms of the polarization

(139)

Equation (139) is a fluctuation-dissipation relationship
that is independent of the applied field. In this
approach, if the correlation function is known, then the
material properties can be calculated. However, in
practice most material properties are measured through
applied fields. The interpretation of this relationship
is that the random microscopic electric fields in a
polarizable lossy medium produce fluctuations in the
polarization and thereby induces loss in the decay to
equilibrium. These fluctuations can be related to
entropy production [44, 61]. We can obtain an
analogous relation for the real part of the susceptibility
by use of Eq. (29).This relation relates the real part of
the susceptibility to fluctuations

(140)

17.2 Magnetic Moment Thermal Fluctuations

Magnetic-moment fluctuations with respect to
signal-to-noise limitations are important to magnetic-
storage technology [200]. This noise can also be
modeled by fluctuation-dissipation relations for
magnetic response. The linear fluctuation-dissipation

relation for the magnetic loss component can be
derived in a way similar to the electric response:

(141) 

17.3 Thermal Fields and Noise

Due to thermal fluctuations, brownian motion of
charges produce random EM fields and noise. In noise
processes the induced current density can be related to
microscopic displacement D

→
and induction fields B

→
.

The cross-spectral density of random fields is
defined as [18]

(142)

The relationship to the time-harmonic correlation
function for the field components is

(143)

Thermally induced fields can be spatially correlated
[17] and can be modeled to first order as

(144)

(145)

(146)

where Θ(ω,Τ ) = (ω/2)coth(ω/2kBT ). Θ→ kBT for
kBT >> ω .

The voltage V and current I in a microscopic trans-
mission line with distributed noise sources νn and in that
are caused by random fields can be modeled by coupled
differential equations as shown in [199].

A special case of Eq. (144) is the well-known
Nyquist noise relation for voltage fluctuations from a
resistance R over a bandwidth Δf is

(147)

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

43

0

0

( ) ( )sin( )

= (< (0) ( ) >)sin( )

= < (0) ( ) > cos( )
2

e

B

B

f t t dt

V d t t dt
k T dt
V t t dt

k T

∞

∞

∞

−∞

′′χ ω = ω

− ω

ω ω

∫
∫
∫

P P

P P



.

e

0

0

0

( ) ( )cos( )

= (< (0) ( ) >)cos( )

= < (0) ( ) > sin( ) .

∞

∞

∞

′χ ω = ω

ω

ω ω

∫
∫
∫


e e

B

B

f t t dt

V d t t dt
k T dt

V t t dt
k T

P P

P P

0

0
0

0

( ) ( )sin( )

= (< (0) ( ) >)sin( )

= < (0) ( ) > cos( )
2

.

μ

μ

∞

∞

∞

−∞

′′χ ω = ω

− ω

ω
ω

∫
∫
∫


m m

B

B

f t t dt

V d t t dt
k T dt
V

t t dt
k T

M M

M M

( , , ) ( , ) ( , )> ( ) .
∞ ′− ω( − )

−∞
′ ′ ′ ′ω = −∫kl

i t t
E k lS <E t E t e d t tr r r r

( , ) ( , )> = 2 ( , , ) ( ) .∗ ′ ′ ′ ′< ω ω π ω δ ω − ω
klk l EE E Sr r r r

2 ( , )( , ) ( , ) >= ( ) ( ) ,i Tr r r - r∗ ∗Θ ω′ ′< ω ω ε − ε δ
ω

   D D

2 ( , )( , ) ( , ) >= ( ) ( ) ,i Tr r r - rμ μ∗ ∗Θ ω′ ′< ω ω − δ
ω

   B B

( , ) ( , ) > = 0 ,r r∗ ′< ω ω
 
B D

2 = 4 Bk TR fν< > Δ .

http://dx.doi.org/10.6028/jres.117.001



17.4 Fluctuations and Entropy

17.4.1 Fluctuations

In thermal equilibrium macroscopic objects have a
well-defined temperature, but in addition there are
equilibrium temperature fluctuations. When the particle
numbers in a system decrease, the thermodynamic
quantities such as temperature and internal energy, have
a less precise meaning than in a large-scale system [61,
201]. In nanosystems, fluctuations in particle energy,
momentum, and local EM fields can be large enough to
affect measurements. These fluctuations translate into
fluctuations in the measured EM fields, internal energy,
temperature, and heat transfer. A system that is far from
thermal equilibrium or very small may not have a well-
defined temperature, macroscopic internal energy, or
specific heat [199, 202, 203]. When the applied driving
fields are removed, some polymers and some spin
systems have relaxation times of seconds to hours until
they decay from a nonequilibrium state to an equilibri-
um state. In these types of nonequilibrium relaxation
processes, equilibrium parameters such as temperature
have only a fuzzy meaning. Fluctuation-dissipation
relations that are used to define transport coefficients in
equilibrium do not apply out of equilibrium.

Nanosystems operate in the region between quantum-
mechanical and macroscopic description and between
equilibrium and nonequilibrium states. Whereas
Johnson noise is related to fluctuations in equilibrium
voltages, there is a need for theoretical work that yields
results that compare well to measurements in this
transition region. As an example, Hanggai et al. showed
that the theoretical bulk definitions for specific heat and
entropy in some nanosystems break down in the high or
low temperature limits [204]. Noise also occurs in non-
equilibrium systems and the theoretical foundations are
not as well developed as in thermal equilibrium.

17.4.2 Fluctuations and Entropy Production

For reliable operation, microelectronic interconnects
require a stable thermal environment because thermal
fluctuations could potentially damage an interconnect
or nano-transistor [205]. An understanding of thermo-
dynamics at the nanoscale and the merging of electro-
magnetism and non-equilibrium thermodynamics is
important for modeling small systems of molecules.
Modeling of thermal fluctuations can be achieved by
relating Nyquist noise to fluctuations in thermal energy.
Another approach away from equilibrium is to use the
concept of entropy production [44]. Entropy can be
increased either by adding heat to a material,

ΔS = ΔQh /T, or by spontaneous processes in the
relaxation of a system from nonequilibrium to an
equilibrium state. In EM interaction with materials, we
can produce entropy either through the dissipation of
the fields in the material or by relaxation processes.
Relaxation processes are usually spontaneous process-
es from nonequilibrium into an equilibrium state.

The entropy is defined as S = kB ln(W), where W is
the number of accessible states. Entropy is a corner-
stone of thermodynamics and non-equilibrium thermo-
dynamics. In thermodynamics the free energy is defined
in terms of the internal energy U as F = – kBT lnZ, where
Z is the partition function. The entropy is also defined in
terms of the free energy as

(148)

In thermodynamics, temperature is defined as

(149)

A very general evolution relation for the macro-
scopic entropy production rate Σ(t) in terms of micro-
scopic entropy production rate s. (t) was derived from
first principles by use of a statistical-mechanical theory
[19, 44, 61, 89, 206]:

(150)

where s. (t) satisfies (< s. (t) > = 0), Σ(t) is the net macro-
scopic entropy production in the system, and T and P
are evolution operators and projection operators,
respectively. The Johnson noise formula is a special
case of Eq. (150) near equilibrium, when Σ(t) = I2R /T
and s. (t) = (1/2)Iν(t) / T, (with < ν(t) > = 0) is a
fluctuating voltage variable, and I is a bias current.

18. Dielectric Response of Crystalline,
Semiconductors, and Polymer
Materials

18.1 Losses in Classes of Single Crystals and 
Amorphous Materials

A class of dielectric single-crystal materials have
very low loss, especially at low temperatures. The low
loss is related to the crystal order, lack of free charge,
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and the low number of defects. Anomalously low
values of the dielectric loss in single-crystal alumina at
low temperatures were reported in 1981 [14, 207]. In
this study, dielectric resonators were used to measure
the loss tangent because cavity resonators do not have
the required precision for very-low-loss materials.
Since then, there has been a large body of research
[208, 209] performed with dielectric resonators that
supports these results. Braginsky et al. [207] showed
that the upper bound for loss in high-quality sapphire
was 1.5 × 10–9 at 3 GHz and at T = 2 K. These reports
were supported by Strayer et al. [210]. These results are
also consistent with the measurements by Krupka et al.
[209], who used a whispering-gallery mode device to
measure losses. Very low loss is obtained in sapphire,
diamond, single-crystal quartz, MGO, and silicon. Low
loss resonators have been studied at candidates for
frequency standards.

The whispering-gallery mode technique is a particu-
larly accurate way of measuring the loss tangent of
materials with low loss [14]. These researchers claim
that the loss tangent for many crystals follows roughly
a f 2 dependence at low temperatures.

In nonpolar materials, dielectric loss originates from
the interaction of phonons or crystal oscillations with
the applied electric field. In the absence of an applied
electric field, the lattice vibrates nearly harmonically
and there is little phonon-phonon interaction. The
electric-field interaction modifies the harmonic elastic
constant and thereby introduces an anharmonic
potential term. The anharmonic interaction allows
phonon-phonon interaction and thereby introduces loss
[73]. Some of the scattering of phonons by other
phonons is manifested as loss.

The loss in many crystals is due to photon quanta of
the electric field interacting with phonons vibrating in
the lattice, thereby creating a phonon in another branch.
Dielectric losses originate from the electric field
interaction with phonons together with two-, three-, and
four-phonon scattering and Umklapp process [73]. The
three- and four-quantum loss corresponds to transitions
between states of the different branches. Crystals with
a center of symmetry have been found to generally
have lower loss than ones with noncentrosymmetry.
The temperature dependence also depends on the
crystal symmetry. For example, a symmetric molecule
such as sapphire has much lower loss than noncentro-
symmetric ferroelectric crystals such as strontium
barium titanate. Quasi-Debye losses correspond to
transitions, which take place between the same branch. 

In centro-symmetric crystals three- and four-quantum
processes are dominant. In noncentro-symmetric
crystals the three-quantum and quasi-Debye processes
dominate.

Gurevich and Tagantsev [73] studied the loss tangent
for cubic and rhombohedric symmetries for tempera-
tures far below the Debye temperature TD = 1047 K.
For these materials, the loss tangent can be modeled as

(151)

where ε is permittivity, ρ is density, ν is speed of sound
in air. For hexagonal crystals, without a center of
symmetry,

(152)

and with symmetry,

(153)

For many dielectric materials with low loss, Gurevich
showed that there is a universal frequency response of
the form tan δ ∝ ω.

The loss tangent in the microwave band of many
low-loss ceramics, fused silica, and many plastics and
some glasses increases nearly linearly as frequency
increases [211]. For materials where the loss tangent
increases linearly with frequency, we can interpolate
and possibly extrapolate microwave loss-tangent
measurement data from one frequency range to another
(Fig. 6). This approach is, of course, limited. This
behavior can be understood in terms of Gurevich’s
relaxation models [73] or by the moment expansion in
[212].

This behavior is in contrast to the model of Jonscher
[213] who has stated that χ″ /χ′ is nearly constant with
frequency in many disordered solids.

18.2 Electric Properties of Semiconductors

Excellent reviews of the dielectric properties of
semiconductors in the microwave range have been
given by Jonscher and others [14, 213-217]. The dc
conductivities of semiconductors are related to holes
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and free charge. In the gigahertz region, the total loss in
most semiconductors decreases significantly since the
effects of the dc conductivity decreases; however, the
dielectric component of loss increases. For gallium
arsenide and gallium nitride the conductivity is
relatively low. Figure 18 shows measurement results on
the permittivity of high-resistivity gallium arsenide as a
function of frequency. These measurements were made
by a mode-filtered TE01 X-band cavity. Silicon
semiconductors can exhibit low to high loss depending
on the level of dopants in the material. There are
Schottky barriers at the interface between semicon-
ductors and metals and at p-n junctions that produce
losses.

The conductivities of semiconductors at low
frequencies fall between those of metals and
dielectrics. The theory of conductivity of semiconduc-
tors begins with an examination of the phenomena in
intrinsic (undoped) samples. At temperatures above
0 K, the kinetic (thermal) energy becomes sufficient to
excite valence band electrons into the conduction band,
where an applied field can act upon them to produce a
current. As these electrons move into the conduction
band, holes are created in the valence band that effec-
tively become another source of current. The total
expression for the conductivity includes contributions
from both electrons and holes and is given by
σdc = q (nμn + pμp ), where q is charge, n is the electron
density, p is the hole density, and μn and μp are the
electron mobility and hole mobility, respectively.

In intrinsic semiconductors, the number of charge
carriers produced through thermal excitation is relative-
ly small, but σdc can be significantly increased by

doping the material with small amounts of impurity
atoms. These additional carriers require much less
thermal energy in order to contribute to σdc . This
results in more carriers becoming available as the
temperature increases, until ionization of all the
impurity atoms is complete.

For temperatures above the full ionization range of
the dopants, σdc is increasingly dominated by μn and μp.
In semiconductors such as silicon, the mobility of the
charge carriers decreases as the temperature increases,
due primarily to the incoherent scattering of the
carriers with the vibrating lattice. At a temperature Ti ,
intrinsic effects begin to contribute additional charge
carriers beyond the maximum contributions of the
impurity atoms, and σdc begins to increase again [215,
216, 219-222].

19. Overview of the Interaction of RF
Fields With BiologicalMaterials

19.1 RF Electrical Properties of Cells, Amino
Acids, Peptides, and Proteins

In this section, we will overview the dielectric relax-
ation of cells, membranes, proteins, amino acids, and
peptides [97, 223-229]. This research area is very large
and we summarize only the most basic concepts as they
relate to RF fields.

Dielectric response of biological tissues to applied
RF fields is related to membrane and cell boundaries,
molecular dipoles, together with associated ionic fluids
and counterions [230]. The ionic solution produces
low-frequency losses that are very high. As a conse-
quence of these mobile charge carriers, counterions
adhere to molecular surfaces, interface charge causes
Maxwell-Wagner capacitances, and electrode polariza-
tion is formed at electrode interfaces. All of these
processes can yield a very high effective ε′r at low
frequencies. Some of the effects of the electrodes can
be corrected for by use of standard techniques [230,
231] (Sec. 8).

Some biological tissues exhibit an α relaxation in the
100 Hz to 1 kHz region due to dipoles and Maxwell-
Wagner interface polarization, another β relaxation in
the megahertz region due to bound water, and γ relax-
ation in the microwave region due to the relaxation of
water and water that is weakly bond.

Amino acids contain carboxyl (COOH) groups,
amide (NH2 ) groups, and side groups. The side groups
and the dipole moment of the amino and carboxyl
groups determine most of the low-frequency dielectric
properties of the acid. Some of the side groups
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Fig. 18. Relative permittivity ε′r of gallium arsenide measured by an
X-band cavity [218]. Start, middle, and terminus refer to different
specimens taken from the same boule. For these measurements
the Type B expanded relative uncertainty at 10 GHz in ε′r was
U = kuc = 0.02 (k = 2), where k is coverage factor.
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are polar, while others are nonpolar. When ionized, the
amino and carboxyl groups have positive and negative
charges, respectively. This charge separation forms a
permanent dipole (Fig. 5). α amino acids have an
amino group and carboxyl group on the same carbon
denoted Cα and α-amino acids have a dipole moment
of 15 to 17 debyes (D) (1 debye equals 3.33 × 10–30

coulomb-meter). β amino acids have a CH2 group
between the amino and carboxyl groups, which
produces a large charge separation and therefore a
dipole moment on the order of 20 D. For a very good
overview see Pethig [223]. Peptides are formed from
condensed amino acids. A peptide consists of a collec-
tion of amino acids connected by peptide bonds.
Peptide bonds provide connections to amino acids
through the CO-NH bond by means of the water mole-
cule as a bridge. The peptide unit has a dipole moment
on the order of 3.7 D. Chains of amino acids are called
polyamino acids or polypeptides. These are terminated
by an amide group on one end and a carboxyl group on
the other side. Typical dipole moments for polypeptides
are on the order of 1000 D.

Polyamino acids can be either in the helical or
random-coil phase. In the helical state, C = O bonds are
linked by hydrogen bonds to NH groups. The helix can
either be right-handed or left-handed; however, the
right-handed helix is more stable. Generally, polyamino
acids have permanent dipole moments and dielectric
relaxation frequencies in the kilohertz region [232].

The origin of relaxation in proteins has been debated
over the years. Proteins are known to be composed of
polyamino acids with permanent dipole moments, but
they also have free and loosely bound protons. These
protons bind loosely to the carboxyl and amino groups.
Kirkwood et al. hypothesized that much of the
observed relaxation behavior of proteins is due to

movement of these nearly free protons in the applied
field or the polarization of counterion sheaths around
molecules [233]. Strong protonic conductivity has also
been observed in DNA. At present, the consensus is
that polar side chains and both permanent dipoles and
the proton-induced polarization contribute to dielectric
relaxation of proteins.

In the literature three dielectric relaxations in
proteins have been identified [231]. These are similar
to that in DNA. The first is the α relaxation in the
10 kHz to 1 MHz region and is due to rotation of the
protein side chains. The second minor β relaxation
occurs in the 100 MHz to 5 GHz range and is thought
to be due to bound water. The third γ relaxation is
around 5 GHz to 25 GHz and is due to semi-free water.

Nucleic acids are high-molecular mass polymers
formed of pyrimidine and purine bases, a sugar, and
phosphoric-acid backbone. Nucleic acids are built up of
nucleotide units, which are composed of sugar, base,
and phosphate groups in helical conformation.
Nucleotides are linked by three phosphates groups,
which are designated α, β, and γ . The phosphate groups
are linked through the pyrophosphate bond. The
individual nucleotides are joined together by groups of
phosphates that form the phosphodiester bond between
the 3′ and 5′ carbon atoms of sugars. These phosphate
groups are acidic. Polynucleotides have a hydroxyl
group at one end and a phosphate group on the other
end. Nucleosides are subunits of nucleotides and
contain a base and a sugar. The bond between the sugar
and base is called the glycosidic bond. The base can
rotate only in the possible orientations about the
glycosidic bond.

Watson and Crick concluded through x-ray diffrac-
tion studies that the structure of DNA is in the form of
a double-stranded helix. In addition to x-ray structure
experiments on DNA, information has been gleaned
through nuclear magnetic resonance (NMR) experi-
ments. Types A and B DNA are in the form of right-
handed helices. Type Z DNA is in a left-handed confor-
mation. There is a Type B to Z transition between
conformations. A transition from Type A to Type B
DNA occurs when DNA is dissolved in a solvent [234].
The Watson-Crick conception of DNA as a uniform
helix is an approximation. In reality, DNA exists in
many conformations and may contain inhomogeneities
such as attached proteins. In general, double-stranded
DNA is not a rigid rod, but rather a meandering chain.
Once formed, even though the individual bonds
composing DNA are weak, the molecule as a whole is
very stable. The helical form of the DNA molecule
produces major and minor grooves in the outer
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Table 5. Approximate dipole moments

Material Dipole Moment (D)

H2O 1.85

CO 0.12

NaCl 9.00

Typical protein 500

Peptide 3.7

Amino acid 20

Polypeptide 1000
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outer surface of the molecule. There are also bound-
water molecules in the grooves. Many interactions
between proteins or protons with DNA occur in these
grooves.

The helix is formed from two strands. The bases in
adjacent strands combine by hydrogen bonding, an
electrostatic interaction with a pyrimidine on one side
and purine on the other. In DNA, the purine adenine
(A) pairs with the pyrimidine thymine (T). The purine
guanine (G) pairs with the pyrimidine cytosine (C). A
hydrogen bond is formed between a covalently bonded
donor hydrogen atom that is positively charged and a
negatively charged acceptor atom. The A-T base pair
associates by two hydrogen bonds, whereas C-G base
pairs associate by three hydrogen bonds. The base-pair
sequence is the carrier of genetic information. The
genetic code is formed of a sequence of three base
pairs, which determine a type of amino acid. For
example, the sequence of TTT AAA AAG GCT

determines an amino acid sequence of phenylalanine-
lysine-lysine-alanine.

The DNA molecule has a net negative charge due to
the phosphate backbone. When dissolved in a cation
solution, some of the charge of the molecule is neutral-
ized by cations. The double-stranded DNA molecule is
generally thought to have little intrinsic permanent
dipole moment. This is because the two strands that
compose the helix are oriented so that the dipole
moment of one strand cancels the other. However,
when DNA is dissolved in a solvent, such as saline
solution, an induced dipole moment forms due to
reorganization of charge into a layer around the
molecule called the counterion sheath.

The interaction of the counterions with biomolecules
has been a subject of intensive research over the years.
Some of the counterions bind to the phosphate back-
bone with a weak covalent bond. Other counterions are
more loosely bound and some may penetrate into the
major and minor grooves of DNA [235]. Ions are
assumed to be bound near charges in the DNA mole-
cule, so that a double layer forms. The ions attracted to
the charged DNA molecule forms a counterion sheath
that shields some of the charge of the DNA. The
counterion sheath around a DNA molecule is composed
of cations such as Na or Mg, which are attracted to the
backbone negative phosphate charges. These charges
are somewhat mobile and oscillate about phosphate
charge centers in an applied electric field. A portion of
these counterions is condensed near the surface of the
molecule, whereas the vast majority are diffusely

bound. Double-stranded DNA possesses a large
induced dipole moment on the order of thousands of
debye, due to the counterion atmosphere. This fact
is gleaned from dielectric relaxation studies, birefrin-
gence, and dichroism experiments [236], and other
light-scattering experiments [237]. The induced dipole
moment μ→ in an electric field E is defined in terms of
the polarizability μ→ = αE .

Because the individual strands of double-stranded
DNA are antiparallel and the molecule is symmetrical,
the transverse dipole moments should cancel. However,
a number of researchers have measured a small perma-
nent dipole moment for DNA [238]. In alternating
fields, the symmetry of the molecule may be deformed
slightly to produce a small permanent dipole moment
[231]. Another origin of the small permanent dipole
moment is attached charged ligands such as proteins or
multivalent cations [239]. These ligands produce a net
dipole moment on the DNA molecule by breaking the
symmetry. The question of how much of the relaxation
of the DNA molecule is due to induced dipolemoment
versus permanent moment has been studied by Hogan
et al. [236]. The response of permanent vs. induced
dipole moment differs in terms of field strength. The
potential energy of a permanent dipole moment at
an angle θ to the electric field is U = – μ E cos θ,
whereas the induced dipole moment in the electric field
is quadratic, U = – (Δα /2)E 2 cos2 θ , where Δα is the
difference in polarizability along anisotropy axes of the
molecule. Experiments indicate that the majority of the
moment was induced rather than permanent. Charge
transport through DNA can be ballistic.

19.2 Dielectric Properties of BoundWater and
Polyelectrolytes

Knowledge of the permittivity of the water near the
surface of a biomolecule is useful for modeling. The
region close to a biomolecule in water has a relatively
low real part of permittivity and a fixed charge. The
region far from the molecule has a permittivity close
to that of water. Lamm and Pack [240] studied the
variation of permittivity in the grooves, near the sur-
face, and far away from the DNA molecule. The effec-
tive permittivity depends on solvent concentration,
distance from the molecule, the effects of the boundary,
and dielectric field-saturation. The variation of permit-
tivity with position significantly alters the predictions
for the electric potential in the groove regions. Model
predictions depend crucially on knowing the dielectric
constant of water. Numerical modeling of the DNA
molecule depends critically on the permittivity of
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water. When the permittivity of water varies in space,
numerical models indicate that small ions such as hydro-
gen can penetrate into the minor and major grooves [235,
241]. These predictions are not obtained for models that
use spatially independent permittivity for water. From
modeling results it was found that the real part of the
effective permittivity around the DNA molecule varies
as a function of distance from the center of the mole-
cule and as a function of solvent concentration in moles
per liter (mol / l) [240].

The molecular structure of water is not simple.
Besides the basic H2O triad structure of the water
molecule, there are also complicated hydrogen-bonded
networks created by dipole-dipole interactions that
form hydroxyl OH– and hydronium H3O+ ions. The
dielectric constant of water at low frequencies is about
80, whereas biological water contains ions, which
affect both the real and imaginary parts of the permit-
tivity. Water bound in proteins and DNA has a
decreased permittivity. This is due to constraints on the
movement of the molecules when they are attached to
biomaterials.

19.3 Response of DNA and Other Biomolecules in
Electric Driving Fields

The low-frequency response of DNA is due primarily
to longitudinal polarization of the diffuse counterion
sheath that surrounds the molecule. This occurs at
frequencies in the range of 1 to 100 Hz. Another relax-
ation occurs in the megahertz region due to movement
of condensed counterions bound to individual phos-
phate groups. Dielectric data on human tissue is given
in Figs. 19 and 20. A number of researchers have
studied dielectric relaxation of both denatured and
helical conformation DNA molecules in electrolyte
solutions both as a function of frequency and applied
field strength. Single-stranded DNA exhibited less
dielectric relaxation than double-stranded DNA [98,
243-246]. Takashima concluded that denatured DNA
tended to coil and thereby decrease the effective length
and therefore the dipole moment. Furthermore, a high
electric field strength affects DNA conductivity in two
ways [244]. First, it promotes an increased dissociation
of the molecule and thereby increases conductivity.
Second, it promotes an orientation field effect where
alignment of polyions increases conductivity.

There are many other types of motion of the DNA
molecule when subjected to mechanical or millimeter
or terahertz electrical driving fields. For example,
propeller twist occurs when two adjacent bases in a pair
twist in opposite directions. Another motion is the

breather mode where two bases oscillate in opposition
as hydrogen bonds are compressed and expanded. The
Lippincott-Schröder and Lennard-Jones potentials are
commonly used for modeling these motions. These
modes resonate at wavelengths in the millimeter
region; however, relaxation damping prevents direct
observation. Other static or dynamic motions of the
base pairs of the DNA molecule are roll, twist, and
slide.

Single-stranded DNA, in its stretched state, possess-
es a dipole moment oriented more or less transverse to
the axis. The phosphate group produces a permanent
transverse dipolemoment of about 20 D per 0.34 nm
base-pair section. The Debye (D) is a unit of dipole
moment and has a value of 3.336 × 10–30 C . m.
Because the typical DNA molecule contains thousands
of base pairs, the net dipole moment can be significant.
However, as the molecule coils or the base pairs twist,
the dipole moment decreases. If single strands of
DNA were rigid, since there is a transverse dipole
moment, and relaxation would occur in the megahertz
to gigahertz frequencies.
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Fig. 19. Measurements of the relative permittivity of various body
tissues by Gabriel et al. [242] (no uncertainties assigned).

Fig. 20. Loss tangent of human tissues by Gabriel et al. [242].
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19.4 Dynamics of Polarization Relaxation in
Biomaterials

In order to study relaxation of polypeptides and
DNA in solution, we first consider the simplest model
of a dipolar rigid rod.

The torque on an electric dipole moment p is

(154)

For cases where the dipole moment is perpendicular
to the rod axis, rotations about the major axis can occur.
The longitudinal rotation relaxation time for a molecule
of length L is given in [247]. The relaxation time varies
with the molecule length. Major axis rotation could
occur if the molecule had a transverse dipole moment;
for example, in a single strand of DNA.

When the dipole moment is parallel to the major
axis, end-over-end rotation may occur. This is the type
of relaxation at low frequencies that occurs with the
induced dipole moment in the counterion sheath or a
permanent dipole moment parallel to the longitudinal
axis of the molecule. The relaxation time varies as L3.
Because length of the molecule and molecular mass are
related, the responses for the two relaxations depend on
molecular mass. Also, the model presented in this
section assumes the rod is rigid. In reality, DNA is not
rigid, so a statistical theory of relaxation needs to be
applied [247-249].

Takashima [98] and Sakamoto et al. [243] have
derived a more comprehensive theory for counterion
relaxation and found that the relaxation time varies in
proportion to the square of the length of the molecule
[249, 250]. Most experimental evidence indicates a L2

dependence. This is in contrast to the rigid-rod model
where the relaxation time varies as L3.

19.5 Counterion Interaction With DNA and Proteins

The real and imaginary parts of permittivity depend
on the concentration and type of cations [250]. As the
concentration of the solvent increases, more of the
phosphate charge is neutralized and the dielectric
increment (difference between the permittivity of the
mixture and solvent by itself) decreases.

Many types of cations compounds have been used
in DNA solvents; for example, NaCl, LiCl, AgNO2 ,
CuCl2 , MnCl2 , MgCl2 , arginines, protamine, dyes,
lysine, histones, and divalent metals such as Pb, Cd, Ni,
Zn, and Hg [243, 251-253]. The simple inorganic-
monovalent cations bind to the DNA molecule near
the phosphate backbone to form both a condensed and
diffuse sheath. There is evidence that strong concen-

trations of divalent metal cations destabilize the DNA
helix [254]. Sakamoto et al. [252] found that the dielec-
tric increment decreased for divalent cations.

On the other hand, histones and protamines tightly
bind in the major groove of the DNA molecule. They
produce stability in the double helix by neutralizing
some of the phosphate charge. Dyes can attach to DNA,
neutralize charge, and thereby decrease dielectric
increment.

20. Methods for Modeling Electro-
magnetic Interactions With Bio-
molecules, Nanoprobes, and
Nanowires

Modeling methods for EM interactions with materi-
als include solving mode-match solutions to Maxwell’s
equations, finite-element and molecular dynamics 
simulations, and finite-difference time-domain models.
Finite-element modeling software can solve Maxwell’s
equations for complicated geometries and small-scale
systems.

Traditionally, mode-match solutions to Maxwell’s
equations meant solving Maxwell’s equations in each
region and then matching the modal field components
at the interfaces and requiring, by the boundary
conditions, all the tangential electric fields go to zero
on conductors. On the nanoscale, the microwave and
millimeter wavelengths are much larger than the
feature size; the skin depths are usually larger than the
device being measured. Therefore modes must be
defined both outside the nanowire and inside the wire
and matched at the interface. Also, the role of the near
field is more important.

The EM model for a specific problem must capture the
important physics such as skin depth, ballistic
transport, conductor resistance, and quantized capaci-
tance, without including all of the microstructural
content. Modeling nanoscale electromagnetics is
particularly difficult in that quantum effects cannot
always be neglected; however, the EM field in these
models is usually treated classically. In the case of near-
field probes the skin depths are usually larger than the
wire dimensions, and therefore the fields then need to be
determined in both the wire and in the space surrounding
the wire. Sommerfeld and Goubau surface waves and
plasmons propagate at the interface of dielectric and
finite conductivity metals and need to be taken into
account in modeling probe interactions. The probe-
material EM communication is often transmitted by the
near field.
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Recently, simulators for molecular dynamics have
advanced to the stage where bonding, electrostatic
interactions, and heat transfer can be modeled, and
some now are beginning to include EM interactions.

21. Metrology Issues
21.1 Effects of Higher Modes in Transmission-Line

Measurements

In this section we describe various common difficul-
ties encountered in measurements of permittivity and
permeability using transmission lines.

The definition of dielectric permittivity becomes
blurred when the particle size in a material is no longer
much smaller than a wavelength. To illustrate this
problem, consider the permittivity from a transmission-
line measurement of a PTFE specimen, which was
reduced using the common Nicolson-Ross method [13]
as shown in Fig. 21. Typical scattering parameters are
shown in Fig. 22. The permittivity obtained from the

scattering data is plotted as a function of frequency. The
intrinsic relative permittivity is seen to be roughly
2.05, the commonly accepted value. However, when
dimensional or Fabry-Perot resonances (see example in
Fig. 22) across the sample occur at multiples of one-
half wavelength, the specimen exhibits a geometrical
standing-wave behavior at frequencies corresponding
to nλ /2 across the sample. So if the sample is treated as
a single particle at these standing wave frequencies,
then the “effective” permittivity from this algorithm is
no longer the intrinsic property of the material, but
rather an artifact of geometric resonances across the
sample. Geometrical resonances are sometimes used by
metamaterial researchers to obtain effective negative
permittivities and permeabilities that produce negative
index response.

Homogeneous solid or liquid dielectric and mag-
netic materials have few intrinsic material resonances
in the RF frequencies. The intrinsic resonances that do
occur are primarily antiferromagnetic, ferromagnetic,
water vapor and oxygen absorption bands, surface
wave and plasma resonances, and atomic transitions.
Dielectric resonances or standing waves that occur in
solid and liquid dielectrics in RF frequencies are
usually either a) geometric resonances of the funda-
mental mode across the specimen, b) an artifact of a
higher mode that resonates across the length of the
specimen, c) resonances or standing waves across the
measurement fixture, or d) due to surface waves near
interfaces between materials.

In the measurement of inhomogeneous materials in a
transmission line or samples with a small air gap
between the material and the fixture, higher modes may
be produced and resonate across the specimen length
in the measurement fixture. For example, in a coaxial
line, the TE0n or TE11 mode may resonate across the
specimen in a coaxial line measurement. These higher
modes do not propagate in the air-filled waveguide
since they are evanescent, but may propagate in the
material-filled guide. Because these modes are not
generally included in the field model, they produce a
nonphysical geometric-based resonance in the reduced
permittivity data, as shown in Fig. 25. These higher
modes usually have low power and are caused by slight
material or machining inhomogeneities. When these
modes do propagate and resonate across the length of
the specimen, it may appear as if the molecules in the
material are under going intrinsic resonance, but this is
not happening. In such cases, if the numerical model
used for the data reduction uses only the fundamental
mode, then the results obtained do not represent the
permittivity of the material, but rather a related fixture
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Fig. 21. Permittivity calculation on a polytetrafluoroethylene
(PTFE) material in a coaxial line that exhibits geometric resonance.

Fig. 22. Scattering parameters |S11| and |S21| as a function of
frequency for nylon in a coaxial line showing one-half wavelength
standing waves.
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specific geometric resonance of a higher mode
(Fig. 25). These resonances are distinct from the
fundamental-mode resonances obtained when the
Nicolson-Ross-Weir reduction method is used [11] in
transmission lines for materials at frequencies corre-
sponding to nλg /2, where n is an integer and λg is the
guided wavelength, as indicated in Fig. 21. The funda-
mental-mode resonances are modeled in the transmis-
sion-line theory and do not produce undue problems. 

However, in magnetic materials where there are both a
permeability and permittivity, half wave geometric
resonances and produce instabilities in the reduction
algorithms [12].

21.2 Behavior of the Real Part of the Permittivity
in Relaxation Response

For linear, homogeneous materials that are relaxing
at RF frequencies, the permittivity decreases as
frequency increases. The permittivity increases only
near tails of intrinsic material resonances that only
occur for frequencies in the high gigahertz region and
above. To show this, we will analyze the prediction of
the DRT permittivity model [90, 212].

We know that the behavior of the orientational polar-
ization of most materials in time-dependent fields can,
as a good approximation at low frequencies, be charac-
terized with a distribution of relaxation times [53].
Typical numerical values of dielectric relaxation times
in liquids are from 0.1 μs to 1 ps.

We consider a description that has a distribution
function y(τ), giving the probability distribution of
relaxation times in the interval (τ,τ + dτ). The DRT
model is summarized in Eq. (69). There are funda-
mental constraints on the distribution y(τ). It is non-
negative everywhere, y(τ) ≥ 0 on τ ∈ [0,∞), and it is
normalized,

(155)

From Eq. (69) we have

(156)

This shows that ε′ is a decreasing function for all
positive ω where the DRT model is valid (low RF
frequencies), with a maximum only at ω = 0. The result
of Eq. (156) holds for any distribution function y(τ).
This model assumes there is only a relaxational
response. If resonant behavior occurs at millimeter to
terahertz frequencies, then the real part of the permit-
tivity will show a slow increase as it approaches the
resonance. In the regions of relaxation response, the
real part of the permittivity is a decreasing function of
frequency. Therefore, ε′(ω) attains a minimum at some
frequency between relaxation and the beginning of
resonance.
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Fig. 23. A typical coaxial line with a specimen inserted.

Fig. 24 Cross-sectional view of a specimen in a coaxial line.

Fig. 25 Higher non-TEM resonant modes in a coaxial fixture and
anomalous behavior of the permittivity.
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22. Permittivity Mixture Equations

We can readily estimate the permittivity of a mixture
of a number of distinct materials. The effective permit-
tivity of a mixture εe f f of constituents with permittivi-
ties ei and volume fractions θi can be approximated in
various ways. The Bruggeman equation [256] is useful
for binary mixtures:

(157)

or the Maxwell-Garnett mixture equation [256] can be
used:

(158)

where ε′1 is the permittivity of the matrix and ε′2 is
the permittivity of the filler [257]. The formula by
Lichtenecker is for a powerlaw dependence of the
real part of the permittivity for –1 ≤ k ≤ 1, and where
the volume fractions of the inclusions and host are
νp and νm :

(159)

This equation has successfully modeled composites
with random inclusions embedded into a host. An
approximation to this is

(160)

23. Discussion

The broad area of RF dielectric electromagnetic
interactions with solid and liquid materials from the
macroscale down to the nanoscale materials was
overviewed. The goal was to give a researcher a broad
overview and access to references in the various areas.
The paper studied the categories of electromagnetic
fields, relaxation, resonance, susceptibility, linear
response, interface phenomena, plasmons, the concepts
of permittivity and permeability, and relaxation times.
Topics of current research interest, such as plasmonic
behavior, negative-index behavior, noise, heating,

nanoscale materials, wave cloaking, polariton surface
waves, biomaterials, and other topics were covered.
The definition and limitations of the concept of permit-
tivity in materials was discussed. We emphasized that
the permittivity and permeability are well defined when
the applied field has a wavelength much longer than the
effective particle size in the material and when multiple
scattering between inclusions is minimal as the wave
propagates through the material. In addition, the use of
the concept of permittivity requires an ensemble of
particles that each have dielectric response.

Acknowledgements

We acknowledge discussions with team members of
the Innovation Measurements Science Program at
NIST: Detection of Corrosion in Steel-Reinforced
Concrete by Antiferromagnetic Resonance, discussions
with Nick Paulter of OLES, and Pavel Kabos and many
other over the years.

24. References

[1] NTIA United States Frequency Allocation Chart,
http://www.ntia.doc.gov/osmhome/allochrt.pdf.

[2] C. Roychoudhuri, A. F. Kracklauer, and K. Creath, The nature
of light: What is a photon, CRC Press, NY (2008).
http://dx.doi.org/10.1201/9781420044256

[3] K. Horie, H. Ushiki, and F. M. Winnik, Molecular Photonics,
Wiley, NY (2000). http://dx.doi.org/10.1002/9783527613205

[4] C. Kittel, Introduction to Solid State Physics, 6th Edition, John
Wiley, NY (1986).

[5] N. W. Ashcroft and N. D. Mermim, Solid State Physics,
Saunders College, Philadelphia (1976).

[6] G. Smith, Introduction to Classical Electromagnetic Radiation,
Cambridge University Press, Cambridge, UK (1997).

[7] S. Yang, G. Beach, C. Knutson, D. Xiao, Q. Niu, M. Tsoi, and
J. Erskine, Universal electromotive force induced by domain
wall motion, Phys. Rev. Lett. 102, 067201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.067201

[8] J. C. Slonczewski, Current-driven excitation of magnetic mul-
tilayers, J. Magn. Magn. Mater. 159, L1-L7 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5

[9] L. Berger, Emission of spin waves by a magnetic multilayer
traversed by a current, Phys. Rev B 54, 9353-9358 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353

[10] R. Clarke, A guide to the dielectric characterization of materi-
als in rf and microwave frequencies, Best Practice Guide, UK
(2003).

[11] J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, A non-linear
least-squares solution with causality constraints applied to
transmission line permittivity and permeability determination,
IEEE Trans. Instrum. Meas. 41, 646-652 (1992).
http://dx.doi.org/10.1109/19.177336

[12] J. Baker-Jarvis, M. D. Janezic, J. H. Grosvenor, and R. G.
Geyer, Transmission/Reflection and Short-Circuit Line

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

53

2 2
e f f e f f

e f f e f f

1 2
1 2

1 2

′ ′ ′ ′ε − ε ε − ε
θ = θ

′ ′ ′ ′ε + ε ε + ε
,

2

2 22 2
e f f

e f f

2 1
1

1

′ ′ε − ε ′ ′ε − ε= θ
′ ′ ′ ′ε + ε ε + ε

,

.k k k
p p m mν νε = ε + ε

ln = ln lnp p m m .V Vε ε + ε

http://dx.doi.org/10.6028/jres.117.001



Methods for Measuring Permittivity and Permeability, NIST
Tech. Note 1355 (1992).

[13] J. Baker-Jarvis, Transmission/Reflection and Short-Circuit
Line Permittivity Measurements, NIST Tech. Note 1341
(1990).

[14] J. Baker-Jarvis, M. D. Janezic, B. Riddle, C. L. Holloway,
N. G. Paulter, and J. E. Blendell, Dielectric and conductor-loss
characterization and measurements on electronic packaging
materials, NIST Tech. Note 1520 (2001).

[15] J. Baker-Jarvis, M. D. Janezic, B. Riddle, P. Kabos, R. Johnk,
C. Holloway, R. Geyer, and C. Grosvenor, Measuring the per-
mittivity and permeability of lossy materials: Solids, liquids,
metals, building materials, and negative-index materials,
NIST Tech. Note 1536 (2005).

[16] M. D. Janezic and J. Baker-Jarvis, Permeability of Metals,
NIST Tech. Note 1532 (2004).

[17] S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarski, Principles of
Statistical Radiophysics, Vol. 3, Springer-Verlag, Moscow
(1978).

[18] K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J.
Greffet, Surface electromagnetic waves thermally excited:
Radiative heat transfer, coherence properties and Casimir
forces revisited in the near field, Surf. Sci. Rep. 57, 59-112
(2005). http://dx.doi.org/10.1016/j.surfrep.2004.12.002

[19] J. Baker-Jarvis, Time-dependent entropy evolution in micro-
scopic and macroscopic electromagnetic relaxation, Phys.
Rev. E 72, 066613 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.066613

[20] J. Baker-Jarvis, M. D. Janezic, and D. C. deGroot, Tutorial on
high frequency dielectric measurements, IEEE
Instrumentation and Measurements Magazine 13, 24-31
(2010). http://dx.doi.org/10.1109/MIM.2010.5438334

[21] H. Schwan, Interactions between electromagnetic fields and
cells, Plenum Press, NY, pp. 371-389 (1985). 

[22] A.W. Friend, E. D. Finch, and H. P. Schwan, Low frequency
electric field induced changes in the shape and mobility of
amoebae, Science 187, 357-359 (1975).
http://dx.doi.org/10.1126/science.1111109

[23] T. J. Lewis, Interfaces are the dominant features of dielectrics
at the nanometric level, IEEE Trans. Dielectr. Electr. Insul. 11,
739-753 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1349779

[24] S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in
Communication Electronics, John Wiley and Sons, NY
(1984).

[25] P. J. Mohr, B. N. Taylor, and D. B. Newell, CODATA recom-
mended values of the fundamental physical constants: 2006,
Rev. Mod. Phys. 80, 633 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.633

[26] V. G. Veselago, The electrodynamics of substances with simul-
taneously negative values of ε and μ, Soviet Phys. Usp. 10,
509-514 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699

[27] J. D. Jackson, Classical Electrodynamics (3rd Ed.), John Wiley
and Sons, NY (1999).

[28] D. Kajfez, Q Factor, Vector Fields, US (1994).
[29] P. Mazur and B. R. A. Nijboer, On the statistical mechanics of

matter in an electromagnetic field: I, Physica 19, 971-986
(1953). http://dx.doi.org/10.1016/S0031-8914(53)80109-6

[30] F. N. H. Robinson, Macroscopic Electromagnetism, Pergamon
Press, Oxford (1973).

[31] S. R. de Groot and L. G. Suttorp, Foundations of
Electrodynamics, American Elsevier, NY (1972).

[32] R. E. Raab and J. H. Cloete, An eigenvalue theory of circular
birefringence and dichroism in a non-magnetic chiral medium,
J. Electromagnetic Waves and Applications 8, 1073-1089
(1994). http://dx.doi.org/10.1163/156939394X00759

[33] F. Bloch and A. Siegert, Magnetic resonance for nonrotating
fields, Phys. Rev. 57, 522 (1940).
http://dx.doi.org/10.1103/PhysRev.57.522

[34] C. Kittel, On the theory of ferromagnetic absorption, Phys.
Rev. 73, 155-161 (1948).
http://dx.doi.org/10.1103/PhysRev.73.155

[35] H. B. Callen, A ferromagnetic dynamical equation, J. Phys.
Chem. Solids 4, 256-270 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90077-5

[36] N. Bloembergen, On the ferromagnetic resonance in nickel
and Supermalloy, Phys. Rev. 78, 572-580 (1950).
http://dx.doi.org/10.1103/PhysRev.78.572

[37] J. H. van Vleck, Concerning the theory of ferromagnetic
absorption, Phys. Rev. 78, 266-274 (1950).
http://dx.doi.org/10.1103/PhysRev.78.266

[38] D. F. Nelson, Electric, Optic, and Acoustic Interactions in
Dielectrics, John Wiley and Sons, NY (1979).

[39] R. Loudon, L. Allen, and D. F. Nelson, Propagation of electro-
magnetic energy and momentum in absorbing dielectric, Phys.
Rev. A 52, 1071-1085 (1997).

[40] J. Baker-Jarvis, P. Kabos, and C. L. Holloway, Nonequilibrium
electromagnetics: Local and macroscopic fields using statisti-
cal mechanics, Phys. Rev. E 70, 036615 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.036615

[41] J. Baker-Jarvis, A general dielectric polarization evolution
equation, IEEE Trans. Dielectr. Electr. Insul. 7, 374-384
(2000). http://dx.doi.org/10.1109/94.848919

[42] E. B. Graham, J. Pierrus, and R. E. Raab, Multipole moments
and Maxwell’s equations, J. Phys. B 25, 4673-4684 (1992).
http://dx.doi.org/10.1088/0953-4075/25/21/030

[43] J. Baker-Jarvis, P. Kabos, Dynamic constitutive relations for
polarization and magnetization, Phys. Rev. E 64, (2001)
56127. http://dx.doi.org/10.1103/PhysRevE.64.056127

[44] J. Baker-Jarvis, Electromagnetic nanoscale metrology based
on entropy production and fluctuations, Entropy 10, 411-429
(2008). http://dx.doi.org/10.3390/e10040411

[45] B. Robertson, Equations of motion of nuclear magnetism,
Phys. Rev. 153, 391-403 (1967).
http://dx.doi.org/10.1103/PhysRev.153.391

[46] J. Baker-Jarvis, M. D. Janezic, and B. Riddle, Dielectric polar-
ization equations and relaxation times, Phys. Rev. E 75,
056612 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.056612

[47] A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta,
Epsilonnear- zero metamaterials and electromagnetic sources:
tailoring the radiation phase pattern, Phys. Rev. B 75, 155410
(2007). http://dx.doi.org/10.1103/PhysRevB.75.155410

[48] F. deFornel, Evanescent waves from Newtonian optics to
atomic optics, Springer, Berlin (2000).

[49] Y. K. Yoo and X. D. Xiang, Combinatorial material prepara-
tion, J. Phys. Condensed Matter 14, R49-R78 (2002).
http://dx.doi.org/10.1088/0953-8984/14/2/202

[50] M. Janezic, J. Jargon, and J. Baker-Jarvis, Relative permittivi-
ty measurements using the higher-order resonant mode of a
nearfield microwave probe, in: URSI Proceedings, Chicago,
IL (2008).

[51] P T. van Duijnen, A. H. de Vries, M. Swart, and F. Grozema,
Polarizabilities in the condensed phase and the local fields

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

54 http://dx.doi.org/10.6028/jres.117.001



problem: A direct field formulation, J. Chem. Phys. 117, 8442-
8453 (2002). http://dx.doi.org/10.1063/1.1512278

[52] R. Wortmann and D. M. Bishop, Effective polarizabilities and
local field corrections for nonlinear optical experiments in
condensed media, J. Chem. Phys. 108, 1001 (1998).
http://dx.doi.org/10.1063/1.475462

[53] C. J. F. Bottcher and P. Bordewijk, Theory of Electric
Polarization, Vol. I and II, Elsevier, NY (1978).

[54] M. Mandel and P. Mazur, On the molecular theory of dielectric
relaxation, Physica 24, 116-128 (1958).
http://dx.doi.org/10.1016/S0031-8914(58)94005-9

[55] J. E. Gubernatis, Scattering theory and effective medium
approximations to heterogeneous materials, AIP 1st
Conference on Electrical Transport and Optical Properties of
Inhomogeneous Materials, 84-98 (1978).

[56] O. Keller, Local fields in the electrodynamics of mesoscopic
media, Physics Reports 268, 85-262 (1996).
http://dx.doi.org/10.1016/0370-1573(95)00059-3

[57] R. H. Cole, Correlation function theory of dielectric relax-
ation, J. Chem. Phys. 42, 637-643 (1965).
http://dx.doi.org/10.1063/1.1695984

[58] S. E. Schnatterly and C. Tarrio, Local fields in solids: aspects
for dielectrics, Rev. Mod. Phys. 64, 619-622 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.619

[59] M. Kuhn and H. Kliem, Local field in dielectric nanospheres
from a microscopic and macroscopic point of view, IEEE
Trans. Dielectr. Electr. Insul. 16, 596-600 (2009).
http://dx.doi.org/10.1109/TDEI.2009.5128493

[60] D. Mcquarrie, Statistical Mechanics, University Science
Books, NY (2000).

[61] J. Baker-Jarvis and J. Surek, Transport of heat and charge in
electromagnetic metrology based on nonequilibrium statistical
mechanics, Entropy 11, 748-765 (2009).
http://dx.doi.org/10.3390/e11040748

[62] C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, A
double negative (DNG) composite material composed of mag-
netodielectric spherical particles in a dielectric, IEEE Trans.
Antennas Propag. 51, 2596-2603 (2003).
http://dx.doi.org/10.1109/TAP.2003.817563

[63] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,
Magnetism from condctors and enhanced nonlinear phenome-
na, IEEE Trans. Microwave Theory Tech. 47, 2075-2084
(1999). http://dx.doi.org/10.1109/22.798002

[64] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs,
Extremely low frequency plasmons in metallic mesostruc-
tures, Phys. Rev. Lett. 76, 4773-4776 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4773

[65] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,
Low frequency plasmons on thin-wire structures, J. Phys.:
Condens. Matter 10, 4785-4809 (1998).
http://dx.doi.org/10.1088/0953-8984/10/22/007

[66] R. W. Ziolkowski and E. Heyman, Wave propagation in media
having negative permittivity and permeability, Phys. Rev. E
64, 056625-1:15 (2001).

[67] C. R. Simovski, Material parameters of metamaterials (a
Review), Optics and Spectroscopy 107, 726-753 (2009).
http://dx.doi.org/10.1134/S0030400X09110101

[68] C. L. Holloway, M. Mohamed, E. Kuester, and A. Dienstfrey,
Reflection and transmission properties of a metafilm: With an
application to a controllable surface composed of resonant
particles, IEEE Trans. Electromagnetic Compatibility 47, 853-
865 (2005). http://dx.doi.org/10.1109/TEMC.2005.853719

[69] S. Kim, E. F. Kuester, C. L. Holloway, A. D. Scher, and J.
Baker-Jarvis, Boundary effects on the determination of meta-
material parameters from normal incidence reflection and
transmission measurements, IEEE Trans. Antennas Propag.
59, 2226-2240 (2011).
http://dx.doi.org/10.1109/TAP.2011.2143679

[70] K. Henneberger, Additional boundary conditions: An historical
mistake, Phys. Rev. Lett. 80, 2889-2892 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2889

[71] K. Mauritz, http://www.psrc.usm.edu/mauritz/mauritz.html.
[72] G. G. Raju, Dielectrics in Electric Fields, 1st Edition, Marcel-

Dekker, Inc., NY (2003).
http://dx.doi.org/10.1201/9780203912270

[73] V. L. Gurevich and A. K. Tagantsev, Intrinsic dielectric loss in
crystals, Advances in Physics 40, 719-767 (1991).
http://dx.doi.org/10.1080/00018739100101552

[74] V. L. Gurevich, Dielectric loss in crystals, Sov. Phys. Solid
State 21, 1993-1998 (1979).

[75] L. A. Dissado and R. M. Hill, Anomalous low frequency dis-
persion, Chem. Soc. Faraday Trans. 2 80, 291-318 (1984).

[76] H. Scher and E. W. Montroll, Anomalous transient-time dis-
persion in amorphous solids, Phys. Rev. B12, 2455-2477
(1975). http://dx.doi.org/10.1103/PhysRevB.12.2455

[77] A. Hunt, Comment on “A probabilistic mechanism hidden
behind the universal power law for dielectric relaxation: gen-
eral relaxation equation,” J. Phys. Condens. Matter 4, 10503-
10512 (1992). http://dx.doi.org/10.1088/0953-8984/4/50/040

[78] A. K. Jonscher, The universal dielectric response and its phys-
ical significance, IEEE Trans. Dielectr. Electr. Insul. 27, 407-
423 (1992).

[79] L. A. Dissado and R. M. Hill, The fractal nature of the cluster
model dielectric response functions, J. Appl. Phys. 66, 2511-
2524 (1989). http://dx.doi.org/10.1063/1.344264

[80] A. K. Jonscher, A many-body model of dielectric polarization
in solids, Phys. Stat. Sol. (b) 83, 585-597 (1977).
http://dx.doi.org/10.1002/pssb.2220830227

[81] J. E. Anderson, Model calculations of cooperative motions in
chain molecules, J. Chem. Phys. 52, 2821-2830 (1970).
http://dx.doi.org/10.1063/1.1673406

[82] R. H. Cole, Molecular correlation function approaches to
dielectric relaxation, in: Physics of Dielectric Solids, Institute
of Physics, Cambridge, MA, pp. 1-21 1980.

[83] J. E. Shore and R. Zwanzig, Dielectric relaxation and dynam-
ic susceptibility of one-dimension model for perpendicular-
dipole polymers, J. Chem. Phys. 63, 5445-5458 (1975).
http://dx.doi.org/10.1063/1.431279

[84] A. Papoulis, The Fourier Integral and Its Applications,
McGraw-Hill, New York (1987).

[85] L. Fonda, G. C. Ghirardi, and A. Rimini, Decay theory of
unstable quantum systems, Rep. Prog. Phys. 41, 587-631
(1978). http://dx.doi.org/10.1088/0034-4885/41/4/003

[86] R. R. Nigmatullin, Theory of the dielectric relaxation in non-
crystalline solids: from a set of micromotions to the averaged
collective motion in the mesoscale region, Physica B 358,
201-215 (2005).
http://dx.doi.org/10.1016/j.physb.2005.01.173

[87] R. R. Nigmatullin and S. O. Nelson, New quantitative reading
of dielectric spectra of complex biological systems, IEEE
Trans. Dielectr. Electr. Insul. 13, 1325-1334 (2006).
http://dx.doi.org/10.1109/TDEI.2006.258204

[88] J. Baker-Jarvis, M. D. Janezic, and J. H. Lehmann, Dielectric
resonator method for measuring the electrical conductivity of

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

55 http://dx.doi.org/10.6028/jres.117.001



carbon nanotubes from microwave to millimeter frequencies,
J. Nanomaterials 2007, 24242 (2007).
http://dx.doi.org/10.1155/2007/24242

[89] B. Robertson, Equations of motion in nonequilibrium statisti-
cal mechanics, Phys. Rev. 144, 151-161 (1966).
http://dx.doi.org/10.1103/PhysRev.144.151

[90] M. W. Coffey, On the generic behavior of the electrical permit-
tivity at low frequencies, Phys. Lett. A. 373, 2793-2795
(2009). http://dx.doi.org/10.1016/j.physleta.2009.05.069

[91] K. K. Mei and G. C. Liang, Electromagnetics of superconduc-
tors, IEEE Trans. Microwave Theory Tech. 39, 1545–1552
(1991). http://dx.doi.org/10.1109/22.83830

[92] B. Meng, B. D. B. Klein, J. H. Booske, and R. F. Cooper,
Microwave absorption in insulating dielectric ionic crystals
including the role of point defects, Phys. Rev. B 53, 12777-
12785 (1996). http://dx.doi.org/10.1103/PhysRevB.53.12777

[93] J. C. Dyre and T. B. Schroder, Universality of ac conduction in
disordered solids, Rev. Mod. Phys. 72, 873-892 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.873

[94] S. A. Rozanski and F. Kremer, Relaxation and charge transport
in mixtures of zwitter-ionic polymers and inorganic salts,
Macromol. Chem. Phys. 196, 877-890 (1995).
http://dx.doi.org/10.1002/macp.1995.021960316

[95] H. P. Schwan, Linear and nonlinear electrode polarization and
biological materials, Ann. Biomed. Eng. 20, 269-288 (1992).
http://dx.doi.org/10.1007/BF02368531

[96] J. Baker-Jarvis, B. Riddle, and A. Young, Ion dynamics near
charged electrodes with excluded volume effect, IEEE Trans.
Dielectr. Electr. Insul. 6, 226-235 (1999).
http://dx.doi.org/10.1109/94.765913

[97] R. H. French, Long range interactions in nanoscale science,
Rev. Mod. Phys. 82, 1887-1944 (2007).
http://dx.doi.org/10.1103/RevModPhys.82.1887

[98] S. Takashima, Dielectric dispersion of deoxyribonucleic acid,
J. Phys. Chem. 70, 1372-1379 (1966).
http://dx.doi.org/10.1021/j100877a006

[99] H. P. Schwan, Electrical properties of tissue and cell suspen-
sions, in: Advances in Biological and Medical Physics, J.
Laurence and C. A. Tobias (Eds.), Academic Press, pp. 147-
209 (1957).

[100] J. C. Bernengo and M. Hanss, Four-electrode, very-low-fre-
quency impedance comparator for ionic solutions, Rev. Sci.
Instrum. 47, 505-508 (1976).
http://dx.doi.org/10.1063/1.1134664

[101] A. Ben-Menahem and S. J. Singh, Seismic Waves and Sources,
Springer-Verlag, NY (1981).
http://dx.doi.org/10.1007/978-1-4612-5856-8

[102] I. Bunget and M. Popescu, Physics of Solid Dielectrics,
Elsevier, NY (1984).

[103] R. Kono, T. A. Litovitz, and G. E. McDuffie, Comparison of
dielectric and mechanical relaxation processes in glycerol-n-
propanol mixtures, J. Chem. Phys. 45, 1790-1795 (1966).
http://dx.doi.org/10.1063/1.1727831

[104] R. E. Rosensweig, Heating magnetic fluid with alternating
magnetic field, Journal of Magnetism and Magnetic Materials
252, 370-374 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00706-0

[105] V. Arkhipov and N. Agmon, Relation between macroscopic
and microscopic dielectric relaxation times in water dynamics,
Israel J. Chem. 43, 363-371 (2004).
http://dx.doi.org/10.1560/5WKJ-WJ9F-Q0DR-WPFH

[106] J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer,
Dielectric spectra of some common solvents in the microwave

region: Water and lower alcohols, Chem. Phys. Lett. 165, 369
(1990). http://dx.doi.org/10.1016/0009-2614(90)87204-5

[107] M. H. Levit, Spin Dynamics: Basics of Nuclear Magnetic
Resonance, Wiley, NY (2001).

[108] A. P. Gregory and R. N. Clarke, Tables of the complex permit-
tivity of dielectric liquids at frequencies up to 5 GHz, no. MAT
23 (2009).

[109] R. E. Collin, Field Theory of Guided Waves, IEEE Press, NY
(1991).

[110] G. Goubau, Electromagnetic Waveguides and Cavities,
Pergamon Press, NY (1961).

[111] D. M. Pozar, Microwave Engineering, Addison-Wesley
Publishing Company, NY (1993).

[112] H. Nyquist, Thermal agitation of electric charge in conductors,
Phys. Rev. 32, 110-113 (1928).
http://dx.doi.org/10.1103/PhysRev.32.110

[113] H. B. Callen, Irreversibilty and generalized noise, Phys. Rev.
83, 34-40 (1951). http://dx.doi.org/10.1103/PhysRev.83.34

[114] H. B. Casimir, On the attraction between two perfectly con-
ducting plates, Kon. Ned. Akad. Wetensch. Proc. 51, 793
(1948).

[115] F. Intravaia, C. Henkel, and A. Lambrecht, Role of plasmons
in the Casimir effect, Phys. Rev. A 76, 033820 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.033820

[116] L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media, Addison-Wesley, Mass. (1987).

[117] K. Gilmore, Y. U. Idzerda, and M. D. Stiles, Identification of
the dominant precession-damping mechanism in Fe, Co, and
Ni by first-principles calculations, Phys. Rev. Lett. 99, 027204
(2007). http://dx.doi.org/10.1103/PhysRevLett.99.027204

[118] D. D. Awschalom and M. E. Flatte, Challenges for semicon-
ductor spintronics, Nature Physics 3, 153-156 (2007).
http://dx.doi.org/10.1038/nphys551

[119] B. Lax and K. J. Button, Microwave ferrites and ferromagnet-
ics, McGraw-Hill, NY (1962).

[120] R. D. McMichael, D. J. Twisselmann, and A. Kunz, Localized
ferromagnetic resonance in inhomogeneous thin films, Phys.
Rev. Lett. 90, 227601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.227601

[121] G. T. Rado, R. W. Wright, W. H. Emerson, and A. Terris,
Ferromagnetism at very high frequencies. IV. Temperature
dependence of the magnetic spectrum of a ferrite, Phys. Rev.
88, 909-915 (1952).
http://dx.doi.org/10.1103/PhysRev.88.909

[122] J. H. V. Vleck, The absorption of microwaves by oxygen,
Phys. Rev. 71, 413-420 (1947).
http://dx.doi.org/10.1103/PhysRev.71.413

[123] J. H. V. Vleck, The absorption of microwaves by uncondensed
water vapor, Phys. Rev. 71, 425-433 (1947).
http://dx.doi.org/10.1103/PhysRev.71.425

[124] P. A. Miles, W. P. Westphal, and A. V. Hippel, Dielectric spec-
troscopy of ferromagnetic semiconductors, Rev. Mod. Phys.
29, 279-307 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.279

[125] D. Polder, Resonance phenomena in ferrites, Rev. Mod. Phys.
25, 89-90 (1951).
http://dx.doi.org/10.1103/RevModPhys.25.89

[126] C. G. Parazzoli, R. B. Greegor, K. Li, B. Koltenbah, and M.
Tanielian, Experimental verification and simulation of nega-
tive index of refraction using Snell’s Law, Phys. Rev. Lett. 90,
107401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.107401

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

56 http://dx.doi.org/10.6028/jres.117.001



[127] J. Pendry, Negative refraction makes a perfect lens, Phys. Rev.
Lett. 85, 3966-3969 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966

[128] J. B. Pendry, Negative refraction, Contemporary Physics 45,
191-202 (2004).
http://dx.doi.org/10.1080/00107510410001667434

[129] D. Schurig, J. J. Mock, S. A. Cummer, J. B. Pendry, A. F. Starr,
and D. R. Smith, Metamaterial electromagnetic cloak at
microwave frequencies, Science 314, 1133628 (2006).
http://dx.doi.org/10.1126/science.1133628

[130] M. G. Silveirinha, A. Alu, and N. Engheta, Parallel-plate meta-
materials for cloaking structures, Phys. Rev. E 75, 036603
(2007). http://dx.doi.org/10.1103/PhysRevE.75.036603

[131] H. J. Lezec, J. A. Dionne, and H. A. Atwater, Negative refrac-
tion at visible frequencies, Science 316, 430-432 (2007).
http://dx.doi.org/10.1126/science.1139266

[132] D. R. Smith and J. B. Pendry, Homogenization of metamateri-
als by field averaging, Journal of the Optical Society of
America 23, 391-403 (2006).
http://dx.doi.org/10.1364/JOSAB.23.000391

[133] B. A. Munk, Metamaterials: Critque and Alternatives, A. John
Wiley and Sons, Hoboken, NJ (2009).

[134] M. Sanz, A. C. Papageorgopoulos, W. F. Egelhoff, Jr., M.
Nieto-Vesperinas, and N. Garcia, Transmission measurements
in wedge shaped absorbing samples: An experiment for
observing negative refraction, Phys. Rev. E 67, 067601
(2003). http://dx.doi.org/10.1103/PhysRevE.67.067601

[135] R. C. Hansen, Negative refraction without negative index,
IEEE Trans. Antennas Propag. 56, 402-404 (2008).
http://dx.doi.org/10.1109/TAP.2007.915440

[136] C. R. Simovski, On electromagnetic characterization and
homogenization of nanostructured metamaterials, Journal of
Optics 13, 013001 (2011).
http://dx.doi.org/10.1088/2040-8978/13/1/013001

[137] P. M. Valanju, R. M. Walser, and A. P. Valanju, Wave refrac-
tion in negative-index media: Always positive and very inho-
mogeneous, Phys. Rev. Lett. 88, 187401–1–4 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.187401

[138] J. Baker-Jarvis, M. D. Janezic, B. Riddle, and R.Wittmann,
Permittivity and permeability and the basis of effective param-
eters, in: CPEM Digest, Broomfield, CO, pp. 522–523 (2008).

[139] S. Muhlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A.
Trekyakov, and F. Lederer, Three-dimensional metamaterial
nanotips, Phys. Rev. B, 075317 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075317

[140] N. Engheta and R. Ziolkowski, Metamaterials, Wiley-
Interscience, NY (2006).
http://dx.doi.org/10.1002/0471784192

[141] J. Baker-Jarvis, M. D. Janezic, T. M. Wallis, C. L. Holloway,
and P. Kabos, Phase velocity in resonant structures, IEEE
Trans. Magnetics 42, 3344-3346 (2006).
http://dx.doi.org/10.1109/TMAG.2006.878874

[142] C. Caloz and T. Itoh, Electromagnetic Metamaterials:
Transmission Line Theory and Microwave Applications,
Wiley-Interscience, Singapore (2006).

[143] J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J.
Mock, Experimental characterization of magnetic surface
plasmons on metamaterials with negative permittivity, Phys.
Rev. B 71, 195402 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195402

[144] S. Maier, Plasmonics, Springer, NY (2007).

[145] J. Weiner, The physics of light transmission through subwave-
length apertures and aperture arrays, Rep. Prog. Phys. 72,
064401 (2009).
http://dx.doi.org/10.1088/0034-4885/72/6/064401

[146] A. Alu and N. Engheta, Coaxial-to-waveguide matching with
e-near-zero ultranarrow channels and bends, IEEE Trans.
Antennas Propag. 58, 328-329 (2010).
http://dx.doi.org/10.1109/TAP.2009.2037714

[147] D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and
H. A. Atwater, Universal optical transmission features in peri-
odic and quasiperiodic hole arrays, Optics Express 16, 9222-
9238 (2008). http://dx.doi.org/10.1364/OE.16.009222

[148] M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-
Moreno, J. Bravo-Abad, F. J. Garca-Vidal, Enhanced millime-
ter wave transmission through quasioptical subwavelength
perforated plates, IEEE Trans. Antennas Propag. 53, 1897-
1903 (2005). http://dx.doi.org/10.1109/TAP.2005.848689

[149] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Cloaking
devices, electromagnetic wormholes, and transformation
optics, SIAM Rev. 51, 3-33 (2009).
http://dx.doi.org/10.1137/080716827

[150] A. Ward, J. Pendry, Refraction and geometry in Maxwell’s
equations, J. Mod. Optics 43, 773-793 (1996).
http://dx.doi.org/10.1080/09500349608232782

[151] A. Sihvola, Peculiarities in the dielectric response of nega-
tivepermittivity scatterers, Progress in Electromagnetics
Research 66, 191-198 (2006).
http://dx.doi.org/10.2528/PIER06112001

[152] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith,
Broadband ground-plane cloak, Science 323, 366-369 (2009).
http://dx.doi.org/10.1126/science.1166949

[153] A. O. Govorov and H. H. Richardson, Generating heat with
metal nanoparticles, Nanotoday 2, 30-38 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70017-8

[154] M. Tanaka and M. Sato, Microwave heating of water, ice, and
saline solution: Molecular dynamics study, J. Chem. Phys.
126, 034509 (2007). http://dx.doi.org/10.1063/1.2403870

[155] C. Gab, S. Gab, E. Grant, B. Halstead, and D. Mingos,
Dielectric parameters relevant to microwave dielectric heat-
ing, Chem. Soc. Revs. 27, 213-218 (1998).
http://dx.doi.org/10.1039/a827213z

[156] M. Gupta and E. Wong, Microwaves and Metals, Wiley,
Singapore (2007). http://dx.doi.org/10.1002/9780470822746

[157] J. Baker-Jarvis and R. Inguva, Mathematical models for in situ
oil shale retorting by electromagnetic radiation, FUEL 67,
916-926 (1988).
http://dx.doi.org/10.1016/0016-2361(88)90090-7

[158] M. Nuchter, B. Ondruschka, W. Bonrath, and A. Gum,
Microwave assisted synthesis—a critical technology review,
Green Chem. 6, 128-141 (2004).

[159] F. Wiesbrock and U. Schubert, Microwaves in chemistry: the
success story goes on, Chemistry Today 24, 30-34 (2006).

[160] D. Obermayer, B. Gutmann, and C. O. Kappe, Microwave
chemistry in silicon carbide reaction vials: Separating thermal
from nonthermal effects, Angew Chem. Int. 48, 8321-8324
(2009). http://dx.doi.org/10.1002/anie.200904185

[161] K. Goodson, L. Jiang, S. Sinha, E. Pop, S. Im, D. Fletcher, W.
King, J. M. Koo, and E. Wang, Microscale thermal engineer-
ing of electronic systems, in: Proceedings of the Rohsenow
Symposium on Future Trends in Heat Transfer, MIT, pp. 1-8
(2003).

[162] J. A. Rowlette and K. E. Goodson, Fully coupled nonequilib-
rium electron-phonon transport in nanometer-scale silicon

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

57 http://dx.doi.org/10.6028/jres.117.001



FETs, IEEE Trans. Electron Devices 55, 220-224 (2008).
http://dx.doi.org/10.1109/TED.2007.911043

[163] I. V. Krive, E. N. Bogachek, A. G. Scherbakov, and U.
Landman, Heat current fluctuations in quantum wires, Phys.
Rev. B 64, 233304 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.233304

[164] A. Govorov and H. Richardson, Generating heat with metal
nanoparticles, Nanotoday 2, 30-38 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70017-8

[165] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed,
Cancer cell imaging and photothermal therapy in the nearin-
frared region by using gold nanorods, J. Am. Chem. Soc. 128,
2115-2120 (2006). http://dx.doi.org/10.1021/ja057254a

[166] P. Keblinski, D. Cahill, A. Bodapati, C. R. Sullivan, and T. A.
Taton, Limits of localized heating by electromagnetically
excited nanoparticles, J. Appl. Phys. 100, 054305 (2006).
http://dx.doi.org/10.1063/1.2335783

[167] C. Padgett and D. Brenner, Acontinuum-atomistic method for
incorporating Joule heating into classical molecular dynamics
simulations, Molecular Simulation 31, 749-757 (2005).
http://dx.doi.org/10.1080/08927020500262614

[168] R. Richert and S. Weinstein, Nonlinear dielectric response and
thermodynamic heterogeneity in liquids, Phys. Rev. Lett. 97,
095703 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.095703

[169] S. Weinstein and R. Richert, Nonlinear features in the dielec-
tric behavior of propylene glycol, Phys. Rev. B 75, 064302
(2007). http://dx.doi.org/10.1103/PhysRevB.75.064302

[170] X. Wu, J. R. Thomas, and W. A. Davis, Control of thermal run-
away in microwave resonant cavities, J. Appl. Phys. 92, 3374-
3380 (2002). http://dx.doi.org/10.1063/1.1501744

[171] G. Roussy, A. Mercier, J. M. Thiebaut, and J. P. Vanbourg,
Temperature runaway of microwave heated materials: Study
and control, J. Microwave Power 20, 47-51 (1985).

[172] C. Bustamante, J. C. Macosko, and G. J. L. Wuite, Grabbing
the cat by the tail: Manipulating molecules one by one, Nature
1, 130-136 (2000).

[173] J. C. Booth, J. Mateu, M. Janezic, J. Baker-Jarvis, and J. A.
Beall, Broadband permittivity measurements of liquid and
biological samples using microfluidic channels, Microwave
Symposium Digest, 2006. IEEE MTT-S International, 1750-
1753 (2006).

[174] J. Moreland, Design of a MEMS force sensor for qualitative-
measurement in the nano to piconewton range, in: Proceedings
of the 6th International Conference and Exhibition on Device
Packaging, Scottsdale, AZ (2010).

[175] E. Mirowski, J.Moreland, S. E. Russek, and M. J. Donahue,
Integrated microfluidic isolation platform for magnetic parti-
cle manipulation in biological systems, Appl. Phys. Lett. 84,
1786-1788 (2004). http://dx.doi.org/10.1063/1.1664013

[176] L. Zheng, J. P. Brody, and P. J. Burke, Electronic manipulation
of DNA, proteins, and nanoparticles for potential circuit
assembly, Biosensors and Bioelectronics 20, 606-619 (2004).
http://dx.doi.org/10.1016/j.bios.2004.03.029

[177] T. B. Jones, Basic theory of dielectrophoresis and electrorota-
tion, IEEE Engineering in Medicine and Biology Magazine
22, 33-42 (2003).
http://dx.doi.org/10.1109/MEMB.2003.1304999

[178] Y. Lin, Modeling of dielectrophoresis in micro and nano sys-
tems, Technical Note, Royal Institute of Technology KTH
Mechanics SE-100 (2008).

[179] R. Holzel and F. F. Bier, Dielectrophoretic manipulation of
DNA, IEE Proceedings Nanobiotechnol. 150, 47-53 (2003).
http://dx.doi.org/10.1049/ip-nbt:20031006

[180] T. Iida and H. Ishihara, Theory of resonant radiation force
exerted on nanostructures by optical excitation of their quan-
tum states: From microscopic to macroscopic descriptions,
Phys. Rev. B 77, 245319 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245319

[181] N. Shi and R. Ramprasad, Local properties at interfaces in
nanodielectrics: An ab initio computational study, IEEE Trans.
Dielectr. Electr. Insul. 15, 170-177 (2008).
http://dx.doi.org/10.1109/T-DEI.2008.4446748

[182] N. Shi and R. Ramprasad, Atomic-scale dielectric permittivity
profiles in slabs and multilayers, Phys. Rev. B 74, 045318
(2006). http://dx.doi.org/10.1103/PhysRevB.74.045318

[183] P. Chiu and I. Shih, A study of the size effects on the tempera-
ture- dependent resistivity of bismuth nanowires with rectan-
gular cross-sections, Nanotechnology 15, 1489-1492 (2004).
http://dx.doi.org/10.1088/0957-4484/15/11/020

[184] J. Guo, S. Hasan, A. Javey, G. Bosman, and M. Lundstrom,
Assessment of high-frequency performance potential of car-
bon nanotube transistors, IEEE Trans. Nanotechnology 4, 715-
721 (2005). http://dx.doi.org/10.1109/TNANO.2005.858601

[185] C. Darne, L. Xie, W. Zagozdzon-Wosik, H. K. Schmidt, and J.
Wosik, Microwave properties of single-walled carbon nan-
otubes films below percolation threshold, Appl. Phys. Lett. 94,
233112 (2000). http://dx.doi.org/10.1063/1.3153505

[186] M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, Electrical
properties of individual ZnO nanowires, Nanotechnology 20,
155203 (2009).
http://dx.doi.org/10.1088/0957-4484/20/15/155203

[187] W. Lu and C. M. Lieber, Semiconducting nanowires, J. Phys.
D: Appl. Phys. 39, R387-R406 (2006).
http://dx.doi.org/10.1088/0022-3727/39/21/R01

[188] U. Yogeswaran and S. Chen, A review on the electrochemical
sensors and biosensors composed of nanowires as sensing
material, Sensors 8, 290–313 (2008).
http://dx.doi.org/10.3390/s8010290

[189] C. Rutherglen and P. Burke, Nanoelectromagnetics: Circuit
and electromagnetic properties of carbon nanotubes, Small 5,
884-906 (2009). http://dx.doi.org/10.1002/smll.200800527

[190] P. Kabos, U. Arz, and D. F. Williams, Calibrated waveform
measurement with high-impedance probes, IEEE Trans.
Microwave Theory Tech. 51, 530-535 (2003).
http://dx.doi.org/10.1109/TMTT.2002.807842

[191] A. Tselev, M. Woodson, C. Qian, and J. Liu, Microwave
impedance spectroscopy of dense carbon nanotube bundles,
Nano Lett. 8, 152-156 (2007).
http://dx.doi.org/10.1021/nl072315j

[192] R. W. Keyes, Physical limits on silicon transistors and circuits,
Rep. Prog. Phys. 68, 2710-2746 (2005).
http://dx.doi.org/10.1088/0034-4885/68/12/R01

[193] B. Kozinsky and N. Marzari, Static dielectric properties of car-
bon nanotubes from first principles, Phys. Rev. Lett. 96,
166801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.166801

[194] P. Rice, T. M. Wallis, S. E. Russek, and P. Kabos, Broadband
electrical characterization of multiwalled carbon nanotubes
and contacts, Nano. Lett. 7, 1086-1090 (2007).
http://dx.doi.org/10.1021/nl062725s

[195] J. M. Luttinger, An exactly soluble model of a manyfermion
system, J. Math. Phys. 4, 1154 (1963).
http://dx.doi.org/10.1063/1.1704046

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

58 http://dx.doi.org/10.6028/jres.117.001



[196] P. J. Burke, Luttinger liquid theory as a model of the gigahertz
electrical properties of carbon nanotubes, IEEE Trans.
Nanotechnology 1, 129-141 (2002).
http://dx.doi.org/10.1109/TNANO.2002.806823

[197] L. Liao, Y. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.
Wang, Y. Huang, and X. Duan, High-speed graphene transitors
with a self-aligned nanowire gate, Nature 467, 305-308
(2010). http://dx.doi.org/10.1038/nature09405

[198] J. Baker-Jarvis, B. Riddle, and M. D. Janezic, Dielectric and
Magnetic Properties of Printed-Wiring Boards and Other sub-
strate Materials, no. NIST Tech. Note 1512 (1999).

[199] J. R. Zurita-Sanchez and C. Henkel, Lossy electrical transmis-
sion lines: Thermal fluctuations and quantization, Phys. Rev.
A 73, 063825 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.063825

[200] N. Smith and P. Arnett, White-noise magnetization fluctua-
tions in magnetoresistive heads, Appl. Phys. Lett. 78, 1148-
1450 (2001). http://dx.doi.org/10.1063/1.1352694

[201] J. Casas-Vazquez and D. Jou, Temperature in nonequilibrium
states: a review of open problems and current proposals, Rep.
Prog. Phys. 66, 1937-2023 (2003).
http://dx.doi.org/10.1088/0034-4885/66/11/R03

[202] X. Wang, Q. H. Liu, and W. Dong, Dependence of the exis-
tence of thermal equilibrium on the number of particles at low
temperatures, Am. J. Phys. 75, 431-433 (2007).
http://dx.doi.org/10.1119/1.2432128

[203] P. Mahzzabi and G. Mansoori, Nonextensivity and noninten-
sivity in nanosystems: A molecular dynamics simulation, J.
Comp. Theor. Nanoscience 2, 138-147 (2005).

[204] P. Hanggi, G. Ingold, and P. Talkner, Finite quantum dissipa-
tion: the challenge of obtaining specific heat, New Journal of
Physics 10, 115008 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/115008

[205] R. van Zon, S. Ciliberto, and E. G. D. Cohen, Power and heat
fluctuation theorems for electric circuits, Phys. Rev. Lett. 92,
130601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.130601

[206] J. Rau and B. Muller, From reversible quantum microdynam-
ics to irreversible quantum transport, Physics Reports 272, 1-
59 (1996). http://dx.doi.org/10.1016/0370-1573(95)00077-1

[207] V. B. Braginsky, V. I. Panov, and S. I. Vassiliev, The properties
of superconducting resonators on sapphire, IEEE Trans.
Magn. 17, 955 (1981).
http://dx.doi.org/10.1109/TMAG.1981.1061069

[208] V. B. Braginsky, Systems with Small Dissipation, University
of Chicago Press, Chicago (1985).

[209] J. Krupka, K. Derzakowski, M. Tobar, J. Hartnett, and R.
Geyer, Complex permittivity of some ultralow loss dielectric
crystals at cryogenic temperatures, Meas. Sci. Technol. 10,
387-392 (1999).
http://dx.doi.org/10.1088/0957-0233/10/5/308

[210] D. M. Strayer, D. J. Dick, and E. Tward,
Superconductorsapphire cavity for an all-cryogenic scso,
IEEE Trans.Magn. 19, 512-515 (1983).
http://dx.doi.org/10.1109/TMAG.1983.1062377

[211] C. Zuccaro, M. Winter, N. Klein, and K. Urban, Microwave
absorption in single crystals of lanthanum aluminate, J. Appl.
Phys. 82, 5625 (1997). http://dx.doi.org/10.1063/1.366433

[212] J. Baker-Jarvis, M. D. Janezic, B. Riddle, and S. Kim,
Behavior of ε'(ω) and tan δ(ω) for a class of low-loss materi-
als, in: Conference on Precision Electromagnetic
Measurements (CPEM), Daejeon, South Korea, pp. 289-290
(2010).

[213] A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea
Dielectrics Press, London (1983).

[214] A. K. Jonscher, Universal Relaxation Law, Chelsea Dielectrics
Press, London (1996).

[215] B. Riddle, J. Baker-Jarvis, and M. D. Janezic, Microwave
characterization of semiconductors with a split-cylinder cavi-
ty, Meas. Sci. Technol. 19, 115701 (2008).
http://dx.doi.org/10.1088/0957-0233/19/11/115701

[216] J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, and
L. Jensen, Measurements of permittivity, dielectric loss tan-
gent, and resistivity of float-zone silicon at microwave fre-
quencies, IEEE Trans. Microwave Theory Tech. 54, 3995-
4001 (2006). http://dx.doi.org/10.1109/TMTT.2006.883655

[217] J. Krupka, D. Mouneyrac, J. G. Harnett, and M. E. Tobar, Use
of whispering-gallery modes and quasi-TE0np modes for
broadband characterization of bulk gallium arsenide and galli-
um phosphide samples, IEEE Trans. Microwave Theory Tech.
56, 1201-1206 (2008).
http://dx.doi.org/10.1109/TMTT.2008.921652

[218] E. J. Vanzura, C. M.Weil, and D. F.Williams, Complex permit-
tivity measurements of gallium arsenide using a highprecision
resonant cavity, in: Digest, Conf. on Precision
Electromagnetic Measurements (CPEM), pp. 103-104 (1992).

[219] K. Y. Tsao and C. T. Sah, Temperature dependence of resistiv-
ity and hole conductivity mobility in p-type silicon, Solid State
Electronics 19, 949-953 (1976).
http://dx.doi.org/10.1016/0038-1101(76)90108-8

[220] R. E. Hummel, Electronic Properties of Materials, 3rd Edition,
Springer, NY (2000).

[221] B. I. Bleaney and B. Bleaney, Electricity and Magnetism, 3rd
Edition, Oxford University Press (1976).

[222] J. Millman and A. Grabel, Microelectronics, 2nd Edition,
McGraw-Hill, Inc., NY (1987).

[223] R. Pethig, Dielectric and Electronic Properties of Biological
Materials, John Wiley and Sons, NY (1979).

[224] J. Baker-Jarvis, B. Riddle, and C. A. Jones, Electrical proper-
ties and dielectric relaxation of DNA in solution, NIST Tech.
Note 1509 (1998).

[225] M. D. Frank-Kamenetskii, V. V. Anshelevich, and A. V.
Lukashin, Polyelectrolyte model of DNA, Biopolymers 30,
317–330 (1987).

[226] K. R. Foster, F. A. Saur, and H. P. Schwan, Electrorotation and
levitation of cells and colloidal particles, Biophys. J. 63, 180-
190 (1992). http://dx.doi.org/10.1016/S0006-3495(92)81588-6

[227] S. Sorriso and A. Surowiec, Molecular dynamics investiga-
tions of DNA by dielectric relaxation measurements,
Advances in Molecular Relaxation and Interaction Processes,
pp. 259–279 (1982).
http://dx.doi.org/10.1016/0378-4487(82)80011-3

[228] A. V. Vorst, A. Rosen, and Y. Kotsuka, RF/Microwave
Interaction with Biological Tissues, Wiley-Interscience, NY
(2006).

[229] S. W. Syme, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry,
The interaction of terahertz between radiation and biological
tissue, Phys. Med. Biol. 46, R101-R112 (2001).
http://dx.doi.org/10.1088/0031-9155/46/9/201

[230] B. Onaral, H. H. Sun, and H. P. Schwan, Electrical properties
of Bioelectrodes, IEEE Trans. Biomedical Eng., BME 31,
827-832 (1984).
http://dx.doi.org/10.1109/TBME.1984.325245

[231] S. Takashima, Electrical Properties of Biopolymers and
Membranes, Springer-Verlag, NY (1989).

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

59 http://dx.doi.org/10.6028/jres.117.001



[232] J. L. Oncley, Proteins, Amino Acids and Peptides, Reinhold,
NY (1943).

[233] J. L. Kirkwood and J. B. Shumaker, The influences of dipole
moment fluctuations on the dielectric increment of proteins in
solution, Proc. Natl. Acad. Sci. USA 38, 855-862 (1952).
http://dx.doi.org/10.1073/pnas.38.10.855

[234] M. Gueron and J. P. Demaret, A simple explanation of the elec-
trostatics of the B to Z transition of DNA, Biophys. 89, 5740-
5743 (1992).

[235] G. R. Pack, G. A. Garrett, L. Wong, and G. Lamm, The effect
of a variable dielectric coefficient and finite ion size on
Poisson-Boltzmann calculations of DNA-electrolyte systems,
Biophys. J. 65, 1363-1370 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81187-1

[236] M. Hogan, N. Dattagupta, and D. M. Crothers, Transient elec-
tric dichroism of rod-like DNA molecules, Proc. Natl. Acad.
Sci. 75, 195-199 (1978).
http://dx.doi.org/10.1073/pnas.75.1.195

[237] M. Sakamoto, T. Fujikado, R. Hayakawa, and Y. Wada, Low
frequency dielectric relaxation and light scattering under AC
electric field of DNA solutions, Biophys. Chem. 11, 309-316
(1980). http://dx.doi.org/10.1016/0301-4622(80)87002-5

[238] M. Hanss and J. C. Bernengo, Dielectric relaxation and orien-
tation of DNA molecules, Biopolymers 12, 2151-2159 (1973).
http://dx.doi.org/10.1002/bip.1973.360120918

[239] G. E. Plum and V. A. Bloomfield, Contribution of asymmetric
ligand binding to the apparent permanent dipole moment of
DNA, Biopolymers 29, 1137-1146 (1990).
http://dx.doi.org/10.1002/bip.360290804

[240] G. Lamm and G. R. Pack, Local dielectric constants and
Poisson-Boltzmann calculations of DNA counterion distribu-
tions, Int. J. Quant. Chem. 65, 1087-1093 (1997).
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:6<
1087::AID-QUA7>3.0.CO;2-R

[241] B. Jayaram, K. A. Sharp, and B. Honig, The electrostatic
potential of B-DNA, Biopolymers 28, 975-993 (1989).
http://dx.doi.org/10.1002/bip.360280506

[242] C. Gabriel, E. H. Grant, R. Tata, P. R. Brown, B. Gestblom,
and E. Noreland, Microwave absorption in aqueous solutions
of DNA, Nature 328, 145-146 (1987).
http://dx.doi.org/10.1038/328145a0

[243] M. Sakamoto, R. Hayakawa, andY. Wada, Dielectric relax-
ation of DNA solutions. III. Effects of DNA concentration,
protein contamination, and mixed solvents, Biopolymers 18,
2769-2782 (1979).
http://dx.doi.org/10.1002/bip.1979.360181109

[244] N. Ise, M. Eigen, and G. Schwarz, The orientation and dissoci-
ation field effect of DNA in solution, Biopolymers 1, 343-352
(1963). http://dx.doi.org/10.1002/bip.360010406

[245] K. R. Foster and H. P. Schwan, Dielectric properties of tissues
and biological materials: A critical review, Vol. 17, CRC Press,
NY, pp. 25-104 (1989).

[246] O. Martinsen, S. Grimmes, and H. Schwan, Interface phenom-
ena and dielectric properties of biological tissues,
Encyclopedia of Surface and Colloid Science, 2643-2652
(2002).

[247] A. J. Bur and D. E. Roberts, Rodlike and random-coil behav-
ior of poly(n-butyl isocyanate) in dilute solution, J. Chem.
Phys. 51, 406-420 (1969).
http://dx.doi.org/10.1063/1.1671740

[248] J. G. Kirkwood, The visco-elastic properties of solutions of
rod-like macromolecules, J. Chem. Phys. 44, 281-283 (1951).
http://dx.doi.org/10.1063/1.1748194

[249] H. Yu, A. J. Bur, and L. J. Fetters, Rodlike behavior of poly(n-
butyl) isocyanate from dielectric measurements, J. Chem.
Phys. 44, 2568-2576 (1966).
http://dx.doi.org/10.1063/1.1727094

[250] M. Sakamoto, H. Kanda, R. Hayakawa, and Y. Wada,
Dielectric relaxation of DNA in aqueous solutions,
Biopolymers 15, 879-892 (1976).
http://dx.doi.org/10.1002/bip.1976.360150506

[251] M. Sakamoto, R. Hayakawa, and Y. Wada, Dielectric relax-
ation of DNA solutions. II., Biopolymers 17, 1507-1512
(1978). http://dx.doi.org/10.1002/bip.1978.360170609

[252] M. Sakamoto, R. Hayakawa, and Y. Wada, Dielectric relax-
ation of DNA solutions. IV. Effects of salts and dyes,
Biopolymers 19, 1039-1047 (1980).
http://dx.doi.org/10.1002/bip.1980.360190508

[253] A. Bonincontro, R. Caneva, and F. Pedone, Dielectric relax-
ation at radiofrequencies of DNA-protamine systems, J. Non-
Crystalline Solids, 131-133 (1991).

[254] J. G. Duguid and V. A. Bloomfield, Electrostatic effects on the
stability of condensed DNA in the presence of divalent
cations, J. Biophys. 70, 2838-2846 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79853-3

[255] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, Improved
technique for determining complex permittivity with the trans-
mission/reflection method, IEEE Trans. Microwave Theory
Tech. 38, 1096-1103 (1990).
http://dx.doi.org/10.1109/22.57336

[256] P. Neelakanta, Handbook of Electromagnetic Materials, CRC
Press, London (1995).

[257] A. Sihvola, Electromagnetic Mixing Formulas and
Applications Engineers, London (1999).

About the authors: James Baker-Jarvis is a physicist
and a Project Leader and Sung Kim is an electrical
engineer and a Guest Researcher and are both in the
Electromagnetics Division of the NIST Physical
Measurement Laboratory. The National Institute of
Standards and Technology is an agency of the U.S.
Department of Commerce.

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001
Journal of Research of the National Institute of Standards and Technology

60 http://dx.doi.org/10.6028/jres.117.001


